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Abstract: The N-gram language model is used in statistical natural language processing like machine translation and speech 

recognition. The evaluation method of the N-gram probability needs a testing process. We use a distributed computing 

platform by using MapReduce algorithm and Hbase tables in Hadoop. Hadoop is an open source implementation of the 

MapReduce framework. The comparative query process is dependent on the NoSQL database. The NoSQL database is used to 

store the testing data sets in tables with different structures. The evaluation process uses a MapReduce algorithm on the 

testing process which acting as a decoder but distributed. This decoder can process multiple testing texts together. There are 

two ways to perform the MapReduce query on testing data. First one called forward query and the second is hiding query. We 

focus on the query response time on a single user runs of three different corpora in the N-gram model. The perplexity method 

is a correct way to estimate the performance of the language model. The perplexity of the testing set is compared with 

traditional language modeling package SRILM Toolkit. The result is discussed depending on the choice of the different Hbase 

tables. The results demonstrate that the proposed framework provide enhanced performance such less time cost, small memory 

size.  
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1. Introduction 

A building block in natural language processing and 

information retrieval defined as N-gram [1]. It is a 

sequence of a string data like contiguous words or 

other tokens in text documents. N-grams are essential 

in the tasks which need to identify words in noisy, 

ambiguous input [5]. It is essential to have a language 

model which measures the probability of how much 

words may occur in some context [11]. Depending on 

the smoothing and back-off methods the N-gram 

language model deals with the problem of data 

sparseness. 

The distributed computing framework called 

Hadoop can be used for language modeling, and Hbase 

is a distributed database which may store the data 

model as database tables and integrate with Hadoop 

platform. On the testing process we use MapReduce, 

acting as a decoder but distributed. This decoder can 

process multiple testing texts together. Based on the 

Katz Back-Off model we estimate a specific n gram, if 

not found, then we estimate n-1 gram until reaches to 

unigram. For different Hbase table which constructed 

on the training data on earlier work [1] we need to 

generate different row and column names only.By 

using MapReduce, we can store multiple testing texts 

into HDFS. Then process all of them to generate the  

 

 

word counts using MapReduce, just the same as we 

have done in the training process on earlier work [1]. 

Then for each N-gram with its counts we directly 

estimate the probability using back-off model, and 

multiply by the counts. Each different N-gram is 

processed only once, which speeds up the whole 

process especially for lower order N-grams. This 

method called forward Query because we query each 

N-gram from Hbase table directly. The more testing N-

grams, the more time it will cost. The perplexity used 

to estimate the evaluation value for the language 

model. 

Organization.Section II describesthe mathematical 

concept of N-gram model. Sections III introduce the 

definition of Hadoop MapReduce framework and 

Hbase distributed database. In Section IV gives the 

detail of perplexity methods and Back-Off method. In 

Section V shows the SRILM Toolkit. In Section VI 

shows the experiments and results. Finally, Section VII 

the conclusion. 

2. Mathematical Concept of N-Gram 

The ability to predict the next word is important for 

augmentative communication systems [8]. N-gram 

algorithm used to assign the probability of sentences. 

And also can assign a probability to the next word in 

an incomplete sentence, and vice versa 
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In speech recognition, it is traditional to use the 

term language model language model or (LM) for a 

statistical model of word sequences. Probabilities are 

based on counting things. 

The simplest N-gram model of word sequences 

would make the word of the language follow any other 

word. So that, every word would have an equal 

probability of following every other word. It is not 

accurate measure so we should use a more complex N-

gram model. To compute the probability of a complete 

string of words 𝑤1, 𝑤2, … , 𝑤𝑛. As an independent 

event, we might represent this probability as in 

Equation (1): 

𝑝(𝑤1, 𝑤2, … , 𝑤𝑛) 

We can use the chain rule in Equation (2) to analyze 

this probability: 

𝑝(𝑤1
𝑛) = 

𝑝(𝑤1)𝑝(𝑤2|𝑤1)𝑝(𝑤3|𝑤1
2) … . . 𝑝(𝑤𝑛|𝑤1

𝑛−1) 

A conditional probability is the suitable way to 

compute the probability. In the bigram model we can 

approximates the probability of a word given all the 

previous words. On Markov assumption, the prior local 

context affectson the next word [7].Equation (3) the 

probability function can be expressed by the frequency 

of words occurrence in a corpus using without 

smoothing: 

𝑝(𝑤𝑛|𝑤1 … 𝑤𝑛−1) =
𝑓(𝑤1…𝑤𝑛)

𝑓(𝑤1…𝑤𝑛−1)
 

where f (w1,….,wn) is the counts of how many times we 

seen the sentence w1,….,wnin the corpus.  

As in Equation (4), N-gram models can be trained by 

counting and normalizing. The normalizing means to 

divide the count of a specific word on total count. So 

the probability is always fall between 0 and 1. We take 

some training corpus, and from this corpus take the 

count of a particular bigram, and divide this count by 

the sum of all the bigrams that share the same first 

word: 

𝑝(𝑤𝑛|𝑤𝑛−1) =
𝐶 (𝑤𝑛 ∩ 𝑤𝑛−1)

𝐶(𝑤𝑛−1)
 

There are some techniques we can use to assign a non-

zero probability. But if the probability is zero, we can 

reevaluate these probabilities to make them non-zero 

values. This technique is called smoothing. There are a 

lot of smoothing can be used. The add-ones smoothing, 

one of a simple way to do smoothing might be just to 

take our matrix of bigram counts, before we normalize 

them into probabilities, and add one to all the counts. 

But this type is not accurate. The adjusted count for 

add-one smoothing is defined in Equation (5): 

𝐶𝑖
∗ = (𝐶𝑖 + 1)

𝑁

𝑁+𝑉
 

Alternatively we can compute the probability directly 

from the count as follows in Equation (6): 

𝑃𝑖
∗ =

𝐶𝑖+1

𝑁+𝑉
 

The Good-Turing smoothing algorithm was described 

by Good (1953), who credits Turing with the original 

idea [7]. The basic idea of Good-Turing smoothing is to 

re-estimate the amount of probability mass to assign to 

N-grams with zero or low counts [5]. By examine Nc 

which is the number of N-grams that occur c times. We 

refer to the number of N-grams that occur c times as the 

frequency of frequency c. So by using this idea to 

smoothing the conditional probability of bigrams, N0 is 

the number of bigrams of count 0, N1 the number of 

bigrams with count 1, and so on. 

The Good-Turing estimate gives a smoothed count c 

based on the set of Nc for all c, as in Equation (7): 

𝐶∗ = (𝐶 + 1)
𝑁𝑐+1

𝑁𝑐
 

If we have no examples of a particular trigram wn-2wn-

1wn to help us compute P(wn|wn-1wn-2), we can estimate 

its probability by using the bigram probability P(wn|wn-

1). Similarly, if we don’t have counts to compute 

P(wn|wn-1). We can look to the unigram P(wn). 

𝑝(𝑤𝑛|𝑤1 … 𝑤𝑛−1) =

{
𝑝(𝑤𝑛|𝑤1 … 𝑤𝑛−1)  𝑖𝑓 𝑓𝑜𝑢𝑛𝑑 (𝑤1 … 𝑤𝑛)

𝜕(𝑤1 … 𝑤𝑛−1) ∗ 𝑝(𝑤𝑛|𝑤2 … 𝑤𝑛−1) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where∂(w1 … wn−1)is the back-off weight. Modern 

back-off smoothing techniques like Kneser-Ney 

smoothing [5] use more parameters to estimate each N-

gram probability instead of a simple Maximum 

Likelihood Estimation. 

3. Hadoop Framework and Hbase Tables 

For coding and running distributed applications that 

process a massive amount of data we can use Hadoop. 

Hadoop is an open source implementation of 

MapReduce model[1].MapReduce based on Java and 

Hadoop Distributed File System (HDFS). The HDFS 

used to create a multiple blocks of data used. This 

makes a model more reliable. Also the HDFS separate 

the task to small blocks. According to this paper, 

Hadoop demonstrated on 3,000 nodes and designed to 

support 20,000 nodes on the clusters. 

For input text files, each line is parsed as one string 

which is the value. For output files, the format is one 

key/value pair per one record, and thus if we want to 

reprocess the output files, the task is working at the 

record pair level [1]. The first step is to split the input 

files to small blocks which called FileSplits. The 

operation of the Map function is parallel working on 

one task per FileSplit. The input and output types of a 

MapReduce job should be in <key and value> pairs. 

The FileSplit input is treated as a key/value pair, and 

user specifies a Map function to process the key/value 

pair to generate a set of intermediate key/value pairs 

[6]. After Map function operation finished, all output 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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pairs which have the same key can be collected 

together. The intermediate pairs are generated from the 

Combine function. Then all intermediate values are 

merges on the Reduce function and writes to output 

files. Map and Reduce operations are working 

independently on small blocks of data [6].The final 

output will be one file per executed reduce task, and the 

output files stores by Hadoop in HDFS. 

For language model training, which described on 

paper using MapReduce [1], our original inputs are text 

files. The N-gram/probability pairs will finally get from 

Hadoop. Theoretically we can only use Hadoop to build 

language model. 

The distributed Hadoop database on top of HDFS is 

Hbase.The Hbase structure is very similar toGoogle’s 

Bigtable model. Hbase is an open-source, distributed, 

versioned, column-oriented store modeled after 

Google's Bigtable [2]. Hbase Tables are designed to 

provide random, realtime read/write access to very 

large tables, billions of rows and millions of 

columns[1]. The time cost and computations will be 

increased if we used the Hadoop and HDFS only. The 

Hadoop MapReduce is mainly used to store the 

input/output files.  

In the query process the mare suitable choice is the 

Hbase tables.Hadoop and HDFS is not suitable for 

query process. Because if we want to query probability 

for one N-gram, we have to load all the files into map 

function, parse all of them, and compare the key with 

N-gram to find the probability value. Basically it will 

cost quite a long time because we need to do this 

comparison for each N-gram in test texts. So we can 

make use of a database structure such as Hbase, to 

store the N-gram probabilities in database table instead 

of parsing files. The advantage of the Hbase 

databasestructure is designed to meet the needs of 

multiple queries.Hbase tables provide the scalable and 

reliable storage. On a language model, the model data 

is highly structured. The basic format is N-

gram/probability pair, which can be easily constructed 

into more organized and compact structures [1]. The 

compressed structures are essential from both time and 

storage aspects because we get huge amount of data. 

Hbase stores data in labeled tables. The table is 

designed to have a sparse structure. Data is stored in 

table rows, and each row has a unique key with 

arbitrary number of columns [1]. Figure 1 shows the 

relationship between Hadoop, Hbase and HDFS. 

 

Figure 1.The relationship between Hadoop, Hbase and HDFS. 

4. Perplexity Method 

The correct way to evaluate the performance of a 

language model N-gram is to embed it in an application 

[5]. There are some methods to evaluate this 

performance. One of these methods called in vivo 

evaluation. But this type is very expensive on time 

which may take hours or even days. Perplexity (PP) is 

the most common evaluation metric for N-gram 

language models. 

The intuition of the perplexity depends on two 

probabilistic models. The better model is the one that 

has tighter fit to the test data also predict better details 

on the test data. A better prediction depends on the 

probability. If the probability of test data is high the 

model is good. If the probability of the word sequence 

is high, then the perplexity is then low. Minimizing the 

perplexity is equal to maximizing the probability. 

The mathematical concept of the perplexity of 

language model on a test set is function of probability 

normalized by the number of words. The perplexity of a 

test set W=w1w2…wN is in Equation (9): 

𝑝𝑝 (𝑤) = 𝑝(𝑤1𝑤2 … . . 𝑤𝑛)−
1

𝑁 

=  √
1

𝑝(𝑤1𝑤2 … . . 𝑤𝑛)

𝑁

 

Equation (10) shows perplexity of bigram model using 

chain rule: 

𝑝𝑝 (𝑤) =  √∏
1

𝑝(𝑤𝑖|𝑤𝑖−1)
𝑁
𝑖=1

𝑁
 

On the other hand, there is another way to think about 

perplexity. According to the weighted branching factor 

of language. The branching factor is the number of 

possible next words that can follow any word. As an 

example, if we want to compute the probability of each 

ten digit from zero to nine, the probability equal 1/10 

and the branching factor for each digit will be 10. 

Our job is to compare four N-gram models on a test 

set. We trained unigram, bigram, trigram and four gram 

on 40 million words [1]. So the results will shows later. 

In this paper we compute the perplexity of each of four 

N-gram models on testing data according to the 

equation (9).the perplexity of N-gram must be 

(9) 

(10) 



Perplexity Method on the N-gram Language Model Based on Hadoop Framework                                                                  97 

 

 

constructed without any knowledge of testing data. 

Because any previous knowledge of test set make low 

perplexity.  

To compute the perplexity on testing data we can 

follow two algorithms. The first algorithm called 

forward processing. And the second algorithm called 

hiding processing. The forward query depends on the 

Katz backoff model. For each testing N-gram we query 

the N-gram based on the backoff model. If the N-gram 

dose not found then we used N-1-gram until reach to 

the unigram. On the second algorithm, we compute the 

perplexity by considering the different N-gram that 

share the same N-1-gram. The hiding query has little 

speed than forward query. 

Katz backoff N-gram model is used if N-gram we 

need has zero counts, so we estimate it by backing off 

to the N-1-gram. We apply backing off until we reach a 

history that has some counts. Figure 2 shows the flow 

chart of the testing process. 

 

Testing Data (from the Corpus)

Compute Word Count in MR

Map Function 

Back-off method

Hash Table

Hbase

Probability value

Start

End
 

Figure 2.Flow chart of testing process. 

5. SRILM Toolkit 

There are two available toolkits using for building 

language models, The SRILM toolkit [9] and the 

Cambridge-CMU toolkit [4]. SRILM is a collection of 

C++ libraries, executable programs. It is used to allow 

the production and experimentation with statistical 

language models for speech recognition and other 

applications. SRILMis freely available for 

noncommercial purposes [5]. The toolkit supports 

creation and evaluation of language model types based 

on N-gram statistics.  

Various software packages for statistical language 

modeling have been used for many years. The basic 

algorithms are simple enough that one can easily 

implement them with reasonable effort for research use. 

The CMU-Cambridge LMtoolkit [4], has been in wide 

use in the research community and has greatly 

facilitated the construction of language models 

(LMs)for many practitioners. SRILM toolkit takes a 

raw text file, one sentence per line with words 

separated by white space. And the output is a language 

model in ARPA format. 

The main purpose of SRILM is to support language 

model estimation and evaluation. Estimation means the 

creation of a model from training data. Evaluation 

means computing the probabilityof a test corpus, 

conventionally expressed as the test set perplexity. 

Since most LMs in SRILM are based on N-gram 

statistics. A standard LM (trigram with Good-Turing 

discounting and Katz backoff for smoothing) would be 

created byngram-count -text TRAINDATA -lm LM. The 

resulting LM may then be evaluated on a test corpus 

using ngram -lm LM -ppl TESTDATA -debug 2.The 

ngram – debug option controls the level of detail of 

diagnostic output. A value of 2 means that probabilities 

are to be reported at the word level, including the order 

of N-gram used, in addition to the standard log 

probabilities and perplexities. 

SRILM treats everything between whitespace as a 

word by itself with no text conditioning. Normalization 

of text is highly corpus-dependent [10]. SRILM 

designed to ensure that enhancements by others find 

their way back into the user community. Licensing for 

commercial purposes is also available. Documentation 

and software are online 

athttp://www.speech.sri.com/projects/srilm/. 

6. NoSQL Query Process in Hadoop 

In this section, we estimate the quality of N-gram 

language model. By using perplexity (PP) for a testing 

set we evaluate the LM quality and compared with 

traditional language modeling tools SRILM. The model 

data size using SRILM is computed as a reference in 

the comparison with PP. 

6.1.Forward NoSQL Query 

The Katz back-off is performed in the forward query 

[7]. Based on the back-off model, for each testing N-

gram, we need to query the raw counts of N-gram, if 

not found, then find (N-1)-gram, until we reach to the 

raw count of unigram [11]. For different table 

structures [1], we just need to generate different row 

and column names. The advantage of using 

MapReduce for the testing is that, we can put multiple 

testing texts into HDFS, and a MapReduce job can 

process all of them to generate the raw counts, just the 

same as we have done in the training process [1], then 

for each N-gram with its counts, we directly estimate 

the probability using back-off model. In such a 

method, each different N-gram is processed only once, 

which speeds up the whole process especially for lower 

order N-grams.  

We call this method Forward Query because we 

query each N-gram directly from Hbase table, so the 

more testing N-grams we have, the more time it will 

cost. Also the perplexity of the estimation is computed 

and collected as an evaluation value for the language in 

http://www.speech.sri.com/projects/srilm/
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the next section. Figure 3 shows the flowchart of the 

forward NoSQL query. 

 
Start

End

Query Process

Compute the probability

Is word found?

Backoff to the n-1 gram

The car= row

Car =row

The word count on sentence

The car is: 4

No

Yes

 

Figure 3.Flow chart of forward query. 

The pseudo code of the forward query for the 

probability based structure [1] is: 

6.2.Hiding NoSQL Query 

The hiding query makes a simple modification in the 

time of the query process than the forward query. 

Considering queries for different N-gram that share the 

same (N-1)-gram, in a back-off model we query the N-

gram first, then if not found, we move on to (N-1)-

gram. Suppose we need to back-off for each N-gram, 

the (N-1)-gram will be requested for multiple times 

[11]. Here is where the hiding steps in. For each back-

off step, we store the (N-1)-gram probability as 

HashMap in memory inside the working node. Every 

time when node comes to a new n-1 backoff query, it 

will first look up in the HashMap, if not found, then 

ask the Hbase table, and add the new (N-1)-gram into 

HashMap. Figure 4 is the flowchart of the hiding query 

process.  

Row Query

Start

The word count (trigram)

The car is: 4

Is word found?

Row Query

Is word found?

Backoff to the n-1 gram

The car= row

Car =row

Compute the 

probability

Compute the 

probability

HashMap

Hbase Tables

End

 

Figure 4.The flowchart of the hiding query. 

We don’t need to store probabilities for N-grams, 

only the (N-1)-grams. Also there is a maximum limit 

of the number of keys in the HashMap. We can’t store 

all the (N-1)-grams into HashMap, otherwise it will 

become huge and eat up the entire working node’s 

memory. So we only store up to maximum limit (N-1)-

grams, and when counts are over the limit, the previous 

HashMap is dropped and filled in new items. It is like 

an updating process, and another alternative is to delete 

the first key in HashMap and push in new one. The 

pseudo code can be written as: 

7. Application Experiments and Results 

The performance was measured on the same sets of 

data. We used three different corpora from three 

Data Input 

Compute the words count for each N-gram model 

 

Start query process 

Method map(): 

Words=line split 

 

Go through all words in the corpus 

Complete all words 

Collect the output 

 

Method reduce(): 

Collect the output 

Collect the counts of each word in the corpus 

 

Method.Estimate(): 

Column = “gt:prob” 

Go through the Hbase tables to find the target value 

If not found 

Try again with (N-1) gram and if not found search for 

N-2 gram until reach to the unigram 
 
 

Data Input 

Compute the words count for each N-gram model 

Start query process 

 

For k as the N-gram  

Hide the HashMap 

while not finished   

prob = get table 

 

ifprob != null 

found probability, finished 

else 

let row be the n-1 gram from k 

if exit cache then prob = get cache 

else 

prob = get table 

 

ifprob !=null then found probability, finished 

if number of cache.keys<maxlimit 

Add cache 

else 

Clear cache 

Add cache 
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different sources. The first data is about 200 million 

words from the British National Corpus (BNC). The 

second data is about 1.8 millions newspaper articles 

from the New York Times Annotated Corpus (NYT). 

The third data is about 50 million web documents in 

English language from the ClueWeb09-B (C90).  

We trained the N-gram models in the previous work 

in paper [1]. The probability of the different N-gram 

models was stored in the Hbase tables in four different 

structures [1]. In the experimental results, we use 

HNM approach. It based on Hadoop framework related 

to the Hbase tables. The performance includes: the 

time cost in the query process, the space size needs, 

and the model evaluation using the perplexity in both 

approaches. We compare the perplexity with the 

traditional evaluation method SRILM. 

7.1. The Experimental Setup 

For the HNM the experiments are done in a cluster 

environment with 2 working nodes and 1 master 

server. Operating System is Ubuntu 10.04. 6 cores 

CPU, 64 GB main memory, 2 TB HDD. Use open 

source Hadoop 1.1.2 running on Oracle Java 

1.6.02_26. The working nodes are running Hadoop, 

HDFS and Hbase slaves, and the master server controls 

all of them. For each experiment, we repeat five times 

and choose the average value as the result.  

7.2. The Performance of Query Processes 

According to paper [1] in the HNM, after training 

process complete, query process starts in different two 

ways in the HNM.  Tables 1, 2, 3, 4, 5, and Table 6 

show the time cost for testing process in the querying 

steps. We apply the query process on three different 

corpora. 

Table 1. Forward query process time cost (min.) for BNC data. 

Gram order 

Hbase types 
Unigram Bigram Trigram 4-gram 

Type 1 

(PBS) 6  35  45  90  

Type 2 

(UWBS) 14  55  110  185  

Type 3 

(UHBS) 6  25  56  98  

Type 4 

(CHBS) 
6  25  58  97  

Table 2. Hiding query process time cost (min.) for BNC data. 

Gram order 

Hbase types 
Unigram Bigram Trigram 4-gram 

Type 1 

(PBS) 5  33  40  87  

Type 2 

(UWBS) 17  50  110  160  

Type 3 

(UHBS) 7  20  45  94  

Type 4 

(CHBS) 
6  20  44  90  

 

Table 3. Forward query process time cost (min.) for NYT data. 

Gram order 

Hbase types 
Unigram Bigram Trigram 4-gram 

Type 1 

(PBS) 4 32 55 60 

Type 2 

(UWBS) 11 43 100 106 

Type 3 

(UHBS) 4 19 58 98 

Type 4 

(CHBS) 
3 20 58  66 

Table 4. Hiding query process time cost (min.) for NYT data. 

Gram order 

Hbase types 
Unigram Bigram Trigram 4-gram 

Type 1 

(PBS) 4.5 32 56 63 

Type 2 

(UWBS) 12 43 104 106 

Type 3 

(UHBS) 5 20 59 99 

Type 4 

(CHBS) 3.8 20 58  67 

Table 5. Forward query process time cost (min.) for C90 data. 

Gram order 

Hbase types 
Unigram Bigram Trigram 4-gram 

Type 1 

(PBS) 7 40 66 68 

Type 2 

(UWBS) 12.6 49 112 176 

Type 3 

(UHBS) 5.8 28 59 106 

Type 4 

(CHBS) 
3.9 25 59  70 

Table 6. Hiding query process time cost (min.) for C90 data. 

Gram order 

Hbase types 
Unigram Bigram Trigram 4-gram 

Type 1 

(PBS) 8.2 40.8 68 70 

Type 2 

(UWBS) 14 51 140 179 

Type 3 

(UHBS) 8 30 77 132 

Type 4 

(CHBS) 
7 39 66 78 

 

Figures 5, 6, and 7shows the time cost in two query 

processes. The query processes applied on three 

different corpora. 
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Figure 5. Time cost in forward & hiding query of BNC 

. 

 

Figure 6. Time cost in forward & hiding query of NYT. 

 

Figure 7. Time cost in forward & hiding query of C90. 

The time consumed for forward and hiding query in 

UWBS is the bigger than other tables. There is some 

kind of redundancy. This is because the rows are less 

expensive than more columns. Also the data structure 

is still uncompressed. There is some kind of 

redundancy. PBS has a good time results. In general, 

for a big data the best time performance is found in 

CHBS. This is because CHBS aggregate UWBS and 

UWBS together. This makes a balance in row and 

column numbers. Hiding query has a less time cost 

than forward query. It stored all the history probability 

on hash table.  

Figure 8explains the space size needs in two query 

processes. We take the average space value for each N-

gram order.  

 

 

Figure 8.Space size in two query processes. 

Perplexity is the model used to evaluate the N-gram 

model. The perplexity of testing processes compared 

with SRILM is shown in Table 7. The SRILM Toolkit 

and the perplexity are computed using default 

parameters for unigram, bigram, trigram and 4-gram 

models. In HNM, the perplexity is better than SRILM 

model especially in a low N-gram order. On Figure 9, 

we shows the perplexity on Hadoop and Hbase is more 

accurate than traditional SRILM model. 

Table 7. Perplexity & SRILM 

Evaluation method 

 

N-gram order 
Hadoop perplexity SRILM 

unigram 2271.958 3245.654 

Bigram 470.549 588.187 

Trigram 461.911 512.879 

4-gram 209.325 348.876 

 

 

Figure 9. Relationship between Hadoop and SRILM perplexity. 
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As shown in Figure 9, the high perplexity found in 

lower order N-gram. Perplexity is high when dealing 

with high N-gram order. The reason for this variation 

is for the huge data founded in low N-gram order. But 

in the high order gram the frequencies of words are 

small. 

The important factor on a comparison between the 

SRILM and perplexity is the size of the language 

model data. By default the size of files in SRILM is 

780 MB without compression. But in Hbase we have 

used compression, we compress the file with gzip and 

the compressed size is only 175 MB, which is a 77.56% 

compression. 

8. Conclusion 

This bibliographical study concerned on how to 

measure N-gram algorithm quality of natural language 

process based on Hadoop framework. From our search 

result; a good choice for distributed language model 

using Hadoop and Hbase is CHBS. PBS is a flat Hbase 

structure which is fast and easy to manipulate locally. 

Also it is widely used in traditional language modeling 

tools like SRILM. For the space cost in the testing set, 

each run the table size is identical, which means the 

model is stable. The CHBS table size is also smaller 

compared with SRILM model data size. This makes 

the CHBS is the best choice. There is small 

improvement in time on the hiding query compared 

with the forward query. This means in a MapReduce 

job it is not efficient way to store a cache in memory 

and check both the memory and the Hbasetable. 

Because there is a lot of time wasted until node search 

on the received whole data and to the stored data. Our 

model shows a better result than SRILM in the 

perplexity comparison. SRILM uses a more complex 

way to compute the probability for unseen unigrams. 

Of course needs more steps using MapReduce. If there 

are not so many unseen unigrams this algorithm is 

good.  

References 

[1] Allam, T., Abdelkader, H., and Sallam, E., 

“Distributed Data Storage of the Language 

Model Based on Hadoop Framework”, submitted 

to Computer Speech and Language, CSL 15-75, 

Elsevier, 2015. 

[2] Apache HBase project: http://hbase.apache.org 

[3] Church, K.W., and Gale, W. A., “A comparison 

of the enhanced Good-Turing and deleted 

estimation methods for estimating probabilities 

of English bigrams”. Computer Speech and 

Language, 1991, 5, 19–54. 

[4] Clarkson, P.,  and Rosenfeld, R., “Statistical 

language modeling using   the CMU-Cambridge 

toolkit”, in G. Kokkinakis, N. Fakotakis, and E. 

Dermatas, editors, Proc. EUROSPEECH, vol. 1, 

pp. 2707–2710, Rhodes, Greece, Sep. 1997. 

[5] Daniel, J., and Martin, H., “Speech and Language 

Processing”, An Introduction to Natural 

Language Processing, Computational Linguistics 

and Speech Recognition, Prentice Hall, 

Englewood Cliffs, New Jersey 07632, September 

28, 1999. 

[6] Dean, J., and Ghemawat, S., “Mapreduce: 

Simplified data processing on large clusters”, In 

OSDI ’04, pages 137–150, 2004. 

[7] Kneser, R., and Ney, H., “Improved backing-off 

for m-gram language modeling”, Acoustics, 

Speech, and Signal Processing, 1995. ICASSP-

95., 1995 International Conference on, 1:181–

184 vol.1, 9-12 May 1995. 

[8] Newell, A., Langer, S., and Hickey, M., “The 

role of natural language processing in alternative 

and augmentative communication”, Natural 

Language Engineering, 1998, 4(1), 1–16.  

[9] Stolck, A., “SRILM- an Extensible Language 

Modeling Toolkit”,Speech Technology and 

Research Laboratory SRI International, Menlo 

Park, CA, U.S.A. 2002. 

[10] Wang, W., Liu, Y., and Harper, M. P., 

“Rescoring effectiveness of language models 

using different levels of knowledge and their 

integration”, in Proc. ICASSP, Orlando, FL, May 

2002. 

[11] Xiaoyang, Y., “Estimating language model using 

hadoop and Hbase”, Master of Artificial 

Intelligence, University of Edinburgh, 2008. 

 

Tahani Allam is a Ph. D. student 

and an assistant lecturer at 

Computers and Control Engineering 

Dept. Faculty of Engineering, Tanta 

University, Tanta, Egypt. She was 

born in Kuwait at 1980, her B.Sc. 

and M.Sc. degrees taken from 

Computers and Control Engineering 

Department - Faculty of Engineering - Tanta 

University at 2002 and 2009, respectively. Her search 

interests include Data Base, Cloud Computing, Hadoop 

framework. She has a paper published in the 

International conference on Computing Technology 

and Information Management, (SDIWC), pp 455-460, 

Dubai, 9-11 April, 2014. The second paper published 

in the 9th International Conference on Informatics and 

Systems 2014 (INFOS), Cairo University, Egypt pp., 

15-17 December 2014. The third paper was submitted 

on Computer Speech and Language, CSL 15-75 on to 

the Elsevier Editorial System, 2015.Eng.Tahani Works 

as a consultant Engineer Management Information 

Systems (MIS) Project – Tanta University, Egypt, from 

August 2008 until Now. 

 



102                                                                                      International Arab Journal of e-Technology, Vol. 4, No. 2, June 2015 

 

Hatem Abdelkader obtained his 

B.Sc. and M.Sc. (by research) both 

in Electrical Engineering from the 

Alexandria University, Faculty of 

Engineering, Egypt in 1990 and 

1995 respectively. He obtained his 

Ph.D. degree in Electrical 

Engineering from the Alexandria University, Faculty 

of Engineering, Egypt in 2001 specializing in neural 

networks and applications. He is currently a professor 

in Information systems department, Faculty of 

Computers and Information, Menofia University, 

Egypt since 2004. He has worked on a number of 

organizations. He has contributed more than +30 

technical papers in the areas of neural networks, 

Database applications, Information security and 

Internet applications. 

 

ElsayedSallam, Emeritus Professor 

at Computers and Control 

Engineering Department-Faculty of 

Engineering-Tanta University, 

Egypt. His B. Sc. degree taken from 

Faculty of Engineering, Menofia 

University, Egypt at 1977.M.Sc. and 

Ph.D. degrees taken from University of Bremen, 

German at 1983, and 1987, respectively. Dr. Elsayed 

was head of the Computers and Control Engineering 

Department-Faculty of Engineering-Tanta University 

from 2008 till 2014. He works as a Manager at 

Management Information Systems (MIS) Project– 

Tanta University, Egypt, from August 2008 until 

December 2011. Then as a CIO - Tanta University, 

Egypt, from December 2011until November 2014. 

 


