
94 International Arab Journal of e-Technology, Vol. 4, No. 2, June 2015

Perplexity Method on the N-gram Language Model

Based on Hadoop Framework

Tahani Mahmoud Allam
1
, Hatem Abdelkader

2
 and Elsayed Sallam

3

1,3
Computers and Control Engineering Dept., Faculty of Engineering,Tanta University, Egypt

2
Information System Dept., Faculty of Computers and Information- Menofia University, Egypt

Abstract: The N-gram language model is used in statistical natural language processing like machine translation and speech

recognition. The evaluation method of the N-gram probability needs a testing process. We use a distributed computing

platform by using MapReduce algorithm and Hbase tables in Hadoop. Hadoop is an open source implementation of the

MapReduce framework. The comparative query process is dependent on the NoSQL database. The NoSQL database is used to

store the testing data sets in tables with different structures. The evaluation process uses a MapReduce algorithm on the

testing process which acting as a decoder but distributed. This decoder can process multiple testing texts together. There are

two ways to perform the MapReduce query on testing data. First one called forward query and the second is hiding query. We

focus on the query response time on a single user runs of three different corpora in the N-gram model. The perplexity method

is a correct way to estimate the performance of the language model. The perplexity of the testing set is compared with

traditional language modeling package SRILM Toolkit. The result is discussed depending on the choice of the different Hbase

tables. The results demonstrate that the proposed framework provide enhanced performance such less time cost, small memory

size.

Keywords: Perplexity model, Distributed language models, N-gram model,MapReduce, Hadoop framework, Hbasetables,

SRILM Toolkit.

Received December 9, 2014; Accepted May 31, 2015

1. Introduction

A building block in natural language processing and

information retrieval defined as N-gram [1]. It is a

sequence of a string data like contiguous words or

other tokens in text documents. N-grams are essential

in the tasks which need to identify words in noisy,

ambiguous input [5]. It is essential to have a language

model which measures the probability of how much

words may occur in some context [11]. Depending on

the smoothing and back-off methods the N-gram

language model deals with the problem of data

sparseness.

The distributed computing framework called

Hadoop can be used for language modeling, and Hbase

is a distributed database which may store the data

model as database tables and integrate with Hadoop

platform. On the testing process we use MapReduce,

acting as a decoder but distributed. This decoder can

process multiple testing texts together. Based on the

Katz Back-Off model we estimate a specific n gram, if

not found, then we estimate n-1 gram until reaches to

unigram. For different Hbase table which constructed

on the training data on earlier work [1] we need to

generate different row and column names only.By

using MapReduce, we can store multiple testing texts

into HDFS. Then process all of them to generate the

word counts using MapReduce, just the same as we

have done in the training process on earlier work [1].

Then for each N-gram with its counts we directly

estimate the probability using back-off model, and

multiply by the counts. Each different N-gram is

processed only once, which speeds up the whole

process especially for lower order N-grams. This

method called forward Query because we query each

N-gram from Hbase table directly. The more testing N-

grams, the more time it will cost. The perplexity used

to estimate the evaluation value for the language

model.

Organization.Section II describesthe mathematical

concept of N-gram model. Sections III introduce the

definition of Hadoop MapReduce framework and

Hbase distributed database. In Section IV gives the

detail of perplexity methods and Back-Off method. In

Section V shows the SRILM Toolkit. In Section VI

shows the experiments and results. Finally, Section VII

the conclusion.

2. Mathematical Concept of N-Gram

The ability to predict the next word is important for

augmentative communication systems [8]. N-gram

algorithm used to assign the probability of sentences.

And also can assign a probability to the next word in

an incomplete sentence, and vice versa

Perplexity Method on the N-gram Language Model Based on Hadoop Framework 95

In speech recognition, it is traditional to use the

term language model language model or (LM) for a

statistical model of word sequences. Probabilities are

based on counting things.

The simplest N-gram model of word sequences

would make the word of the language follow any other

word. So that, every word would have an equal

probability of following every other word. It is not

accurate measure so we should use a more complex N-

gram model. To compute the probability of a complete

string of words 𝑤1, 𝑤2, … , 𝑤𝑛. As an independent

event, we might represent this probability as in

Equation (1):

𝑝(𝑤1, 𝑤2, … , 𝑤𝑛)

We can use the chain rule in Equation (2) to analyze

this probability:

𝑝(𝑤1
𝑛) =

𝑝(𝑤1)𝑝(𝑤2|𝑤1)𝑝(𝑤3|𝑤1
2) … . . 𝑝(𝑤𝑛|𝑤1

𝑛−1)

A conditional probability is the suitable way to

compute the probability. In the bigram model we can

approximates the probability of a word given all the

previous words. On Markov assumption, the prior local

context affectson the next word [7].Equation (3) the

probability function can be expressed by the frequency

of words occurrence in a corpus using without

smoothing:

𝑝(𝑤𝑛|𝑤1 … 𝑤𝑛−1) =
𝑓(𝑤1…𝑤𝑛)

𝑓(𝑤1…𝑤𝑛−1)

where f (w1,….,wn) is the counts of how many times we

seen the sentence w1,….,wnin the corpus.

As in Equation (4), N-gram models can be trained by

counting and normalizing. The normalizing means to

divide the count of a specific word on total count. So

the probability is always fall between 0 and 1. We take

some training corpus, and from this corpus take the

count of a particular bigram, and divide this count by

the sum of all the bigrams that share the same first

word:

𝑝(𝑤𝑛|𝑤𝑛−1) =
𝐶 (𝑤𝑛 ∩ 𝑤𝑛−1)

𝐶(𝑤𝑛−1)

There are some techniques we can use to assign a non-

zero probability. But if the probability is zero, we can

reevaluate these probabilities to make them non-zero

values. This technique is called smoothing. There are a

lot of smoothing can be used. The add-ones smoothing,

one of a simple way to do smoothing might be just to

take our matrix of bigram counts, before we normalize

them into probabilities, and add one to all the counts.

But this type is not accurate. The adjusted count for

add-one smoothing is defined in Equation (5):

𝐶𝑖
∗ = (𝐶𝑖 + 1)

𝑁

𝑁+𝑉

Alternatively we can compute the probability directly

from the count as follows in Equation (6):

𝑃𝑖
∗ =

𝐶𝑖+1

𝑁+𝑉

The Good-Turing smoothing algorithm was described

by Good (1953), who credits Turing with the original

idea [7]. The basic idea of Good-Turing smoothing is to

re-estimate the amount of probability mass to assign to

N-grams with zero or low counts [5]. By examine Nc

which is the number of N-grams that occur c times. We

refer to the number of N-grams that occur c times as the

frequency of frequency c. So by using this idea to

smoothing the conditional probability of bigrams, N0 is

the number of bigrams of count 0, N1 the number of

bigrams with count 1, and so on.

The Good-Turing estimate gives a smoothed count c

based on the set of Nc for all c, as in Equation (7):

𝐶∗ = (𝐶 + 1)
𝑁𝑐+1

𝑁𝑐

If we have no examples of a particular trigram wn-2wn-

1wn to help us compute P(wn|wn-1wn-2), we can estimate

its probability by using the bigram probability P(wn|wn-

1). Similarly, if we don’t have counts to compute

P(wn|wn-1). We can look to the unigram P(wn).

𝑝(𝑤𝑛|𝑤1 … 𝑤𝑛−1) =

{
𝑝(𝑤𝑛|𝑤1 … 𝑤𝑛−1) 𝑖𝑓 𝑓𝑜𝑢𝑛𝑑 (𝑤1 … 𝑤𝑛)

𝜕(𝑤1 … 𝑤𝑛−1) ∗ 𝑝(𝑤𝑛|𝑤2 … 𝑤𝑛−1) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where∂(w1 … wn−1)is the back-off weight. Modern

back-off smoothing techniques like Kneser-Ney

smoothing [5] use more parameters to estimate each N-

gram probability instead of a simple Maximum

Likelihood Estimation.

3. Hadoop Framework and Hbase Tables

For coding and running distributed applications that

process a massive amount of data we can use Hadoop.

Hadoop is an open source implementation of

MapReduce model[1].MapReduce based on Java and

Hadoop Distributed File System (HDFS). The HDFS

used to create a multiple blocks of data used. This

makes a model more reliable. Also the HDFS separate

the task to small blocks. According to this paper,

Hadoop demonstrated on 3,000 nodes and designed to

support 20,000 nodes on the clusters.

For input text files, each line is parsed as one string

which is the value. For output files, the format is one

key/value pair per one record, and thus if we want to

reprocess the output files, the task is working at the

record pair level [1]. The first step is to split the input

files to small blocks which called FileSplits. The

operation of the Map function is parallel working on

one task per FileSplit. The input and output types of a

MapReduce job should be in <key and value> pairs.

The FileSplit input is treated as a key/value pair, and

user specifies a Map function to process the key/value

pair to generate a set of intermediate key/value pairs

[6]. After Map function operation finished, all output

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

96 International Arab Journal of e-Technology, Vol. 4, No. 2, June 2015

pairs which have the same key can be collected

together. The intermediate pairs are generated from the

Combine function. Then all intermediate values are

merges on the Reduce function and writes to output

files. Map and Reduce operations are working

independently on small blocks of data [6].The final

output will be one file per executed reduce task, and the

output files stores by Hadoop in HDFS.

For language model training, which described on

paper using MapReduce [1], our original inputs are text

files. The N-gram/probability pairs will finally get from

Hadoop. Theoretically we can only use Hadoop to build

language model.

The distributed Hadoop database on top of HDFS is

Hbase.The Hbase structure is very similar toGoogle’s

Bigtable model. Hbase is an open-source, distributed,

versioned, column-oriented store modeled after

Google's Bigtable [2]. Hbase Tables are designed to

provide random, realtime read/write access to very

large tables, billions of rows and millions of

columns[1]. The time cost and computations will be

increased if we used the Hadoop and HDFS only. The

Hadoop MapReduce is mainly used to store the

input/output files.

In the query process the mare suitable choice is the

Hbase tables.Hadoop and HDFS is not suitable for

query process. Because if we want to query probability

for one N-gram, we have to load all the files into map

function, parse all of them, and compare the key with

N-gram to find the probability value. Basically it will

cost quite a long time because we need to do this

comparison for each N-gram in test texts. So we can

make use of a database structure such as Hbase, to

store the N-gram probabilities in database table instead

of parsing files. The advantage of the Hbase

databasestructure is designed to meet the needs of

multiple queries.Hbase tables provide the scalable and

reliable storage. On a language model, the model data

is highly structured. The basic format is N-

gram/probability pair, which can be easily constructed

into more organized and compact structures [1]. The

compressed structures are essential from both time and

storage aspects because we get huge amount of data.

Hbase stores data in labeled tables. The table is

designed to have a sparse structure. Data is stored in

table rows, and each row has a unique key with

arbitrary number of columns [1]. Figure 1 shows the

relationship between Hadoop, Hbase and HDFS.

Figure 1.The relationship between Hadoop, Hbase and HDFS.

4. Perplexity Method

The correct way to evaluate the performance of a

language model N-gram is to embed it in an application

[5]. There are some methods to evaluate this

performance. One of these methods called in vivo

evaluation. But this type is very expensive on time

which may take hours or even days. Perplexity (PP) is

the most common evaluation metric for N-gram

language models.

The intuition of the perplexity depends on two

probabilistic models. The better model is the one that

has tighter fit to the test data also predict better details

on the test data. A better prediction depends on the

probability. If the probability of test data is high the

model is good. If the probability of the word sequence

is high, then the perplexity is then low. Minimizing the

perplexity is equal to maximizing the probability.

The mathematical concept of the perplexity of

language model on a test set is function of probability

normalized by the number of words. The perplexity of a

test set W=w1w2…wN is in Equation (9):

𝑝𝑝 (𝑤) = 𝑝(𝑤1𝑤2 … . . 𝑤𝑛)−
1

𝑁

= √
1

𝑝(𝑤1𝑤2 … . . 𝑤𝑛)

𝑁

Equation (10) shows perplexity of bigram model using

chain rule:

𝑝𝑝 (𝑤) = √∏
1

𝑝(𝑤𝑖|𝑤𝑖−1)
𝑁
𝑖=1

𝑁

On the other hand, there is another way to think about

perplexity. According to the weighted branching factor

of language. The branching factor is the number of

possible next words that can follow any word. As an

example, if we want to compute the probability of each

ten digit from zero to nine, the probability equal 1/10

and the branching factor for each digit will be 10.

Our job is to compare four N-gram models on a test

set. We trained unigram, bigram, trigram and four gram

on 40 million words [1]. So the results will shows later.

In this paper we compute the perplexity of each of four

N-gram models on testing data according to the

equation (9).the perplexity of N-gram must be

(9)

(10)

Perplexity Method on the N-gram Language Model Based on Hadoop Framework 97

constructed without any knowledge of testing data.

Because any previous knowledge of test set make low

perplexity.

To compute the perplexity on testing data we can

follow two algorithms. The first algorithm called

forward processing. And the second algorithm called

hiding processing. The forward query depends on the

Katz backoff model. For each testing N-gram we query

the N-gram based on the backoff model. If the N-gram

dose not found then we used N-1-gram until reach to

the unigram. On the second algorithm, we compute the

perplexity by considering the different N-gram that

share the same N-1-gram. The hiding query has little

speed than forward query.

Katz backoff N-gram model is used if N-gram we

need has zero counts, so we estimate it by backing off

to the N-1-gram. We apply backing off until we reach a

history that has some counts. Figure 2 shows the flow

chart of the testing process.

Testing Data (from the Corpus)

Compute Word Count in MR

Map Function

Back-off method

Hash Table

Hbase

Probability value

Start

End

Figure 2.Flow chart of testing process.

5. SRILM Toolkit

There are two available toolkits using for building

language models, The SRILM toolkit [9] and the

Cambridge-CMU toolkit [4]. SRILM is a collection of

C++ libraries, executable programs. It is used to allow

the production and experimentation with statistical

language models for speech recognition and other

applications. SRILMis freely available for

noncommercial purposes [5]. The toolkit supports

creation and evaluation of language model types based

on N-gram statistics.

Various software packages for statistical language

modeling have been used for many years. The basic

algorithms are simple enough that one can easily

implement them with reasonable effort for research use.

The CMU-Cambridge LMtoolkit [4], has been in wide

use in the research community and has greatly

facilitated the construction of language models

(LMs)for many practitioners. SRILM toolkit takes a

raw text file, one sentence per line with words

separated by white space. And the output is a language

model in ARPA format.

The main purpose of SRILM is to support language

model estimation and evaluation. Estimation means the

creation of a model from training data. Evaluation

means computing the probabilityof a test corpus,

conventionally expressed as the test set perplexity.

Since most LMs in SRILM are based on N-gram

statistics. A standard LM (trigram with Good-Turing

discounting and Katz backoff for smoothing) would be

created byngram-count -text TRAINDATA -lm LM. The

resulting LM may then be evaluated on a test corpus

using ngram -lm LM -ppl TESTDATA -debug 2.The

ngram – debug option controls the level of detail of

diagnostic output. A value of 2 means that probabilities

are to be reported at the word level, including the order

of N-gram used, in addition to the standard log

probabilities and perplexities.

SRILM treats everything between whitespace as a

word by itself with no text conditioning. Normalization

of text is highly corpus-dependent [10]. SRILM

designed to ensure that enhancements by others find

their way back into the user community. Licensing for

commercial purposes is also available. Documentation

and software are online

athttp://www.speech.sri.com/projects/srilm/.

6. NoSQL Query Process in Hadoop

In this section, we estimate the quality of N-gram

language model. By using perplexity (PP) for a testing

set we evaluate the LM quality and compared with

traditional language modeling tools SRILM. The model

data size using SRILM is computed as a reference in

the comparison with PP.

6.1.Forward NoSQL Query

The Katz back-off is performed in the forward query

[7]. Based on the back-off model, for each testing N-

gram, we need to query the raw counts of N-gram, if

not found, then find (N-1)-gram, until we reach to the

raw count of unigram [11]. For different table

structures [1], we just need to generate different row

and column names. The advantage of using

MapReduce for the testing is that, we can put multiple

testing texts into HDFS, and a MapReduce job can

process all of them to generate the raw counts, just the

same as we have done in the training process [1], then

for each N-gram with its counts, we directly estimate

the probability using back-off model. In such a

method, each different N-gram is processed only once,

which speeds up the whole process especially for lower

order N-grams.

We call this method Forward Query because we

query each N-gram directly from Hbase table, so the

more testing N-grams we have, the more time it will

cost. Also the perplexity of the estimation is computed

and collected as an evaluation value for the language in

http://www.speech.sri.com/projects/srilm/

98 International Arab Journal of e-Technology, Vol. 4, No. 2, June 2015

the next section. Figure 3 shows the flowchart of the

forward NoSQL query.

Start

End

Query Process

Compute the probability

Is word found?

Backoff to the n-1 gram

The car= row

Car =row

The word count on sentence

The car is: 4

No

Yes

Figure 3.Flow chart of forward query.

The pseudo code of the forward query for the

probability based structure [1] is:

6.2.Hiding NoSQL Query

The hiding query makes a simple modification in the

time of the query process than the forward query.

Considering queries for different N-gram that share the

same (N-1)-gram, in a back-off model we query the N-

gram first, then if not found, we move on to (N-1)-

gram. Suppose we need to back-off for each N-gram,

the (N-1)-gram will be requested for multiple times

[11]. Here is where the hiding steps in. For each back-

off step, we store the (N-1)-gram probability as

HashMap in memory inside the working node. Every

time when node comes to a new n-1 backoff query, it

will first look up in the HashMap, if not found, then

ask the Hbase table, and add the new (N-1)-gram into

HashMap. Figure 4 is the flowchart of the hiding query

process.

Row Query

Start

The word count (trigram)

The car is: 4

Is word found?

Row Query

Is word found?

Backoff to the n-1 gram

The car= row

Car =row

Compute the

probability

Compute the

probability

HashMap

Hbase Tables

End

Figure 4.The flowchart of the hiding query.

We don’t need to store probabilities for N-grams,

only the (N-1)-grams. Also there is a maximum limit

of the number of keys in the HashMap. We can’t store

all the (N-1)-grams into HashMap, otherwise it will

become huge and eat up the entire working node’s

memory. So we only store up to maximum limit (N-1)-

grams, and when counts are over the limit, the previous

HashMap is dropped and filled in new items. It is like

an updating process, and another alternative is to delete

the first key in HashMap and push in new one. The

pseudo code can be written as:

7. Application Experiments and Results

The performance was measured on the same sets of

data. We used three different corpora from three

Data Input

Compute the words count for each N-gram model

Start query process

Method map():

Words=line split

Go through all words in the corpus

Complete all words

Collect the output

Method reduce():

Collect the output

Collect the counts of each word in the corpus

Method.Estimate():

Column = “gt:prob”

Go through the Hbase tables to find the target value

If not found

Try again with (N-1) gram and if not found search for

N-2 gram until reach to the unigram

Data Input

Compute the words count for each N-gram model

Start query process

For k as the N-gram

Hide the HashMap

while not finished

prob = get table

ifprob != null

found probability, finished

else

let row be the n-1 gram from k

if exit cache then prob = get cache

else

prob = get table

ifprob !=null then found probability, finished

if number of cache.keys<maxlimit

Add cache

else

Clear cache

Add cache

Perplexity Method on the N-gram Language Model Based on Hadoop Framework 99

different sources. The first data is about 200 million

words from the British National Corpus (BNC). The

second data is about 1.8 millions newspaper articles

from the New York Times Annotated Corpus (NYT).

The third data is about 50 million web documents in

English language from the ClueWeb09-B (C90).

We trained the N-gram models in the previous work

in paper [1]. The probability of the different N-gram

models was stored in the Hbase tables in four different

structures [1]. In the experimental results, we use

HNM approach. It based on Hadoop framework related

to the Hbase tables. The performance includes: the

time cost in the query process, the space size needs,

and the model evaluation using the perplexity in both

approaches. We compare the perplexity with the

traditional evaluation method SRILM.

7.1. The Experimental Setup

For the HNM the experiments are done in a cluster

environment with 2 working nodes and 1 master

server. Operating System is Ubuntu 10.04. 6 cores

CPU, 64 GB main memory, 2 TB HDD. Use open

source Hadoop 1.1.2 running on Oracle Java

1.6.02_26. The working nodes are running Hadoop,

HDFS and Hbase slaves, and the master server controls

all of them. For each experiment, we repeat five times

and choose the average value as the result.

7.2. The Performance of Query Processes

According to paper [1] in the HNM, after training

process complete, query process starts in different two

ways in the HNM. Tables 1, 2, 3, 4, 5, and Table 6

show the time cost for testing process in the querying

steps. We apply the query process on three different

corpora.

Table 1. Forward query process time cost (min.) for BNC data.

Gram order

Hbase types
Unigram Bigram Trigram 4-gram

Type 1

(PBS) 6 35 45 90

Type 2

(UWBS) 14 55 110 185

Type 3

(UHBS) 6 25 56 98

Type 4

(CHBS)
6 25 58 97

Table 2. Hiding query process time cost (min.) for BNC data.

Gram order

Hbase types
Unigram Bigram Trigram 4-gram

Type 1

(PBS) 5 33 40 87

Type 2

(UWBS) 17 50 110 160

Type 3

(UHBS) 7 20 45 94

Type 4

(CHBS)
6 20 44 90

Table 3. Forward query process time cost (min.) for NYT data.

Gram order

Hbase types
Unigram Bigram Trigram 4-gram

Type 1

(PBS) 4 32 55 60

Type 2

(UWBS) 11 43 100 106

Type 3

(UHBS) 4 19 58 98

Type 4

(CHBS)
3 20 58 66

Table 4. Hiding query process time cost (min.) for NYT data.

Gram order

Hbase types
Unigram Bigram Trigram 4-gram

Type 1

(PBS) 4.5 32 56 63

Type 2

(UWBS) 12 43 104 106

Type 3

(UHBS) 5 20 59 99

Type 4

(CHBS) 3.8 20 58 67

Table 5. Forward query process time cost (min.) for C90 data.

Gram order

Hbase types
Unigram Bigram Trigram 4-gram

Type 1

(PBS) 7 40 66 68

Type 2

(UWBS) 12.6 49 112 176

Type 3

(UHBS) 5.8 28 59 106

Type 4

(CHBS)
3.9 25 59 70

Table 6. Hiding query process time cost (min.) for C90 data.

Gram order

Hbase types
Unigram Bigram Trigram 4-gram

Type 1

(PBS) 8.2 40.8 68 70

Type 2

(UWBS) 14 51 140 179

Type 3

(UHBS) 8 30 77 132

Type 4

(CHBS)
7 39 66 78

Figures 5, 6, and 7shows the time cost in two query

processes. The query processes applied on three

different corpora.

100 International Arab Journal of e-Technology, Vol. 4, No. 2, June 2015

Figure 5. Time cost in forward & hiding query of BNC

.

Figure 6. Time cost in forward & hiding query of NYT.

Figure 7. Time cost in forward & hiding query of C90.

The time consumed for forward and hiding query in

UWBS is the bigger than other tables. There is some

kind of redundancy. This is because the rows are less

expensive than more columns. Also the data structure

is still uncompressed. There is some kind of

redundancy. PBS has a good time results. In general,

for a big data the best time performance is found in

CHBS. This is because CHBS aggregate UWBS and

UWBS together. This makes a balance in row and

column numbers. Hiding query has a less time cost

than forward query. It stored all the history probability

on hash table.

Figure 8explains the space size needs in two query

processes. We take the average space value for each N-

gram order.

Figure 8.Space size in two query processes.

Perplexity is the model used to evaluate the N-gram

model. The perplexity of testing processes compared

with SRILM is shown in Table 7. The SRILM Toolkit

and the perplexity are computed using default

parameters for unigram, bigram, trigram and 4-gram

models. In HNM, the perplexity is better than SRILM

model especially in a low N-gram order. On Figure 9,

we shows the perplexity on Hadoop and Hbase is more

accurate than traditional SRILM model.

Table 7. Perplexity & SRILM

Evaluation method

N-gram order
Hadoop perplexity SRILM

unigram 2271.958 3245.654

Bigram 470.549 588.187

Trigram 461.911 512.879

4-gram 209.325 348.876

Figure 9. Relationship between Hadoop and SRILM perplexity.

Perplexity Method on the N-gram Language Model Based on Hadoop Framework 101

As shown in Figure 9, the high perplexity found in

lower order N-gram. Perplexity is high when dealing

with high N-gram order. The reason for this variation

is for the huge data founded in low N-gram order. But

in the high order gram the frequencies of words are

small.

The important factor on a comparison between the

SRILM and perplexity is the size of the language

model data. By default the size of files in SRILM is

780 MB without compression. But in Hbase we have

used compression, we compress the file with gzip and

the compressed size is only 175 MB, which is a 77.56%

compression.

8. Conclusion

This bibliographical study concerned on how to

measure N-gram algorithm quality of natural language

process based on Hadoop framework. From our search

result; a good choice for distributed language model

using Hadoop and Hbase is CHBS. PBS is a flat Hbase

structure which is fast and easy to manipulate locally.

Also it is widely used in traditional language modeling

tools like SRILM. For the space cost in the testing set,

each run the table size is identical, which means the

model is stable. The CHBS table size is also smaller

compared with SRILM model data size. This makes

the CHBS is the best choice. There is small

improvement in time on the hiding query compared

with the forward query. This means in a MapReduce

job it is not efficient way to store a cache in memory

and check both the memory and the Hbasetable.

Because there is a lot of time wasted until node search

on the received whole data and to the stored data. Our

model shows a better result than SRILM in the

perplexity comparison. SRILM uses a more complex

way to compute the probability for unseen unigrams.

Of course needs more steps using MapReduce. If there

are not so many unseen unigrams this algorithm is

good.

References

[1] Allam, T., Abdelkader, H., and Sallam, E.,

“Distributed Data Storage of the Language

Model Based on Hadoop Framework”, submitted

to Computer Speech and Language, CSL 15-75,

Elsevier, 2015.

[2] Apache HBase project: http://hbase.apache.org

[3] Church, K.W., and Gale, W. A., “A comparison

of the enhanced Good-Turing and deleted

estimation methods for estimating probabilities

of English bigrams”. Computer Speech and

Language, 1991, 5, 19–54.

[4] Clarkson, P., and Rosenfeld, R., “Statistical

language modeling using the CMU-Cambridge

toolkit”, in G. Kokkinakis, N. Fakotakis, and E.

Dermatas, editors, Proc. EUROSPEECH, vol. 1,

pp. 2707–2710, Rhodes, Greece, Sep. 1997.

[5] Daniel, J., and Martin, H., “Speech and Language

Processing”, An Introduction to Natural

Language Processing, Computational Linguistics

and Speech Recognition, Prentice Hall,

Englewood Cliffs, New Jersey 07632, September

28, 1999.

[6] Dean, J., and Ghemawat, S., “Mapreduce:

Simplified data processing on large clusters”, In

OSDI ’04, pages 137–150, 2004.

[7] Kneser, R., and Ney, H., “Improved backing-off

for m-gram language modeling”, Acoustics,

Speech, and Signal Processing, 1995. ICASSP-

95., 1995 International Conference on, 1:181–

184 vol.1, 9-12 May 1995.

[8] Newell, A., Langer, S., and Hickey, M., “The

role of natural language processing in alternative

and augmentative communication”, Natural

Language Engineering, 1998, 4(1), 1–16.

[9] Stolck, A., “SRILM- an Extensible Language

Modeling Toolkit”,Speech Technology and

Research Laboratory SRI International, Menlo

Park, CA, U.S.A. 2002.

[10] Wang, W., Liu, Y., and Harper, M. P.,

“Rescoring effectiveness of language models

using different levels of knowledge and their

integration”, in Proc. ICASSP, Orlando, FL, May

2002.

[11] Xiaoyang, Y., “Estimating language model using

hadoop and Hbase”, Master of Artificial

Intelligence, University of Edinburgh, 2008.

Tahani Allam is a Ph. D. student

and an assistant lecturer at

Computers and Control Engineering

Dept. Faculty of Engineering, Tanta

University, Tanta, Egypt. She was

born in Kuwait at 1980, her B.Sc.

and M.Sc. degrees taken from

Computers and Control Engineering

Department - Faculty of Engineering - Tanta

University at 2002 and 2009, respectively. Her search

interests include Data Base, Cloud Computing, Hadoop

framework. She has a paper published in the

International conference on Computing Technology

and Information Management, (SDIWC), pp 455-460,

Dubai, 9-11 April, 2014. The second paper published

in the 9th International Conference on Informatics and

Systems 2014 (INFOS), Cairo University, Egypt pp.,

15-17 December 2014. The third paper was submitted

on Computer Speech and Language, CSL 15-75 on to

the Elsevier Editorial System, 2015.Eng.Tahani Works

as a consultant Engineer Management Information

Systems (MIS) Project – Tanta University, Egypt, from

August 2008 until Now.

102 International Arab Journal of e-Technology, Vol. 4, No. 2, June 2015

Hatem Abdelkader obtained his

B.Sc. and M.Sc. (by research) both

in Electrical Engineering from the

Alexandria University, Faculty of

Engineering, Egypt in 1990 and

1995 respectively. He obtained his

Ph.D. degree in Electrical

Engineering from the Alexandria University, Faculty

of Engineering, Egypt in 2001 specializing in neural

networks and applications. He is currently a professor

in Information systems department, Faculty of

Computers and Information, Menofia University,

Egypt since 2004. He has worked on a number of

organizations. He has contributed more than +30

technical papers in the areas of neural networks,

Database applications, Information security and

Internet applications.

ElsayedSallam, Emeritus Professor

at Computers and Control

Engineering Department-Faculty of

Engineering-Tanta University,

Egypt. His B. Sc. degree taken from

Faculty of Engineering, Menofia

University, Egypt at 1977.M.Sc. and

Ph.D. degrees taken from University of Bremen,

German at 1983, and 1987, respectively. Dr. Elsayed

was head of the Computers and Control Engineering

Department-Faculty of Engineering-Tanta University

from 2008 till 2014. He works as a Manager at

Management Information Systems (MIS) Project–

Tanta University, Egypt, from August 2008 until

December 2011. Then as a CIO - Tanta University,

Egypt, from December 2011until November 2014.

