International Arab Journal of e-Technology, Vol. 2, No. 4, June 2012 197

An Effective Method For Data Compression Based
On Adaptive Character Wordlength

Wiam Al Hayek
Department of Social and Applied Sciences, Prince Alia University College,
Al Balga Applied University, Jordan

Abstract: The adaptive character wordlength (ACW) algorithm is a bit-level, lossless, adaptive, and asymmetric text
compression algorithm that is recently proposed. In this algorithm, the binary sequence is divided into a number of blocks (B)
each of n-bit length (n > 8). This gives each block a possible decimal values ranges from 0 to 2"-1. If the number of the
different decimal values (d) is equal to or less than 256 (d < 256), then the binary sequence can be compressed using n-bit
character wordlength, rather than using the standard 8-bit character wordlength. Thus, a compression ratio of approximately
n/8 can be achieved. Since the compression ratio is a function of n, this algorithm is referred to as ACW(n).

Keywords: Data Compression, Algorithm, Scheme.

Received October 20, 2010; accepted February 26, 2012

1. Introduction

Data compression algorithms are designed to reduce
the size of data so that it requires less disk space for
storage and less bandwidth to be transmitted over data
communication channels of limited bandwidth [11].
An additional benefit of data compression is that it
decreases the amount of errors during data
transmission ~ over error-prune communication
channels, by decreasing the size of information to be
exchanged over such channels [1, 6, 10].

Data compression is usually obtained by
substituting a shorter symbol for an original symbol in
the source data, containing the same information but
with a smaller representation in length. The symbols
may be characters, words, phrases, or any other unit
that may be stored in a dictionary of symbols and
processed by a computing system [9, 15].

Data compression requires efficient algorithmic
transformations of data representations to produce
more compact representations. Such algorithms are
known as data compression algorithms or data
encoding algorithms. Each data compression algorithm
needs to be complemented by its inverse, which is
known as a data decompression algorithm (or also can
be referred to as a data decoding algorithm), to restore
an exact or an approximate form of the original data [2,
7].

The basic data compression/ decompression block
diagram is illustrated in figure 1. It is shown as a black
box, in which the original data stream may be
processed according to one or more compression
algorithms, which generate a compressed data stream.
On the other hand, the compressed data stream may be
processed according to one or more decompression

algorithms to reproduce exact/approximate original
data stream [7].

Daztz
—] ComprEEzion B
Algorithm(s)

Dripimz] | == == == - Comprassad
Thain Datz Datz
fp— Dl2compression |—
Alzorithm(s)

Figure 1. Basic data compression/decompression block diagram.

Data coding techniques have been widely used in
developing data compression algorithms, since coding
techniques may lend themselves well to the above
concept [10].

Data coding involves processing an input sequence:

X={x[1]. ¥[2].... x[M]} N

Where each input symbol, x[7], is drawn from a source
alphabet:

S ={s, S ..., S})
Whose probabilities are:
P={p1, P2, .., P} With2 <m < o0 3)

For example, for binary alphabet m = 2, § is either 0 or
1. The encoding process is rendered by transforming X
into an output sequence:

Y= {1112, ... yIOI} 4)

Where each output symbol y[i] is drawn from a code
alphabet:

A=A{a; a...,a,})

198 International Arab Journal of e-Technology, Vol. 2, No. 4, June 201

Here the code alphabet is still binary (i.e., either 0 or 1,
q = 2), but Q must be much less than M. The main
problem in data compression is to find an encoding
scheme that minimizes the size of ¥, in such a way that
X can be completely recovered by applying the scheme
that minimizes the size of ¥, in such a way that X can
be completely recovered by applying the

decompression process

2. Adaptive Character Wordlength

Our proposed method can be classified as a bit-level,
lossless, adaptive, and asymmetric data compression
algorithm [2, 15]. In this algorithm, the data symbols
(characters) of a source file are converted to a binary
sequence by concatenated the individual binary codes
of the data symbols.

The binary sequence is, then, subdivided into a
number of blocks, each of 7-bit length (n > 8). The last
block is padded with Os if the remaining bits are less
than »n. For a binary sequence of N-bit length, the
number of blocks B (where B is a positive integer

number) is given by:
B= lri—‘ (6)
n

The number of padding bits (g), which is added to the
last block is calculated by:

g=B*n-N (7

For these B blocks, the equivalent decimal value of
each block lies between 0 to 2"-1. The number of the
different decimal values (d), these blocks may have, is
between 1 to 2”. That is because not all possible n-bit
binary sequences could exist, and some blocks may
have the same decimal values (binary sequence).
Practically, 1 represents that all blocks have the same
decimal value, and 2" represents that all possible
decimal values are assigned to different blocks.
Although, B > 2", it is still possible that d < 2", which
means that not all possible decimal values are used and
some blocks have the same value.

In order to be able to compress a binary sequence
using n-bit character wordlength, d should be less than
or equal to 256 (d < 256). If this condition is satisfied
(i.e., d < 256), then these d values are arranged in
ascending order, and each block is converted to symbol
(character) according to its sequence number, and not
according to its actual decimal value. In this case, it is
clear that B is equivalent to the number of characters
that will be written to the compressed file.

Otherwise, if the above condition can be fulfilled
(i.e., d > 256), then the file can not be compressed
using n-bit character wordlength. Thus, another
character wordlength should be examined, until a
particular value is found for # or the source file can not
be compressed using more than 8-bit character

wordlength. Therefore, this algorithm is referred to as
ACW(n).

The ACW(n) algorithm can be used to compress a
binary sequence of data regardless of the way that has
been adopted to create that particular binary sequence.
Therefore, it can also be used as complementary
compression algorithm for other data compression
algorithms. For example, it can be used as a
complementary algorithm to statistical compression
algorithms, in such algorithms, the characters in the
source file are converted to a binary sequence, where
the most common characters in the file have the
shortest binary codes, and the least common have the
longest, the binary codes are generated based on the
estimated probability of the character within the file.
Then, instead of compressing the generated binary
sequence using 8-bit character wordlength, as it is
usually done, the ACW(#n) algorithm can be used to
reduce the size of the compressed file, thereafter,
enhances the compression process. The ACW(n)
algorithm, in such cases, searches for the maximum
possible character wordlength » (n > 8), so that the
compression ratio can improved and approximately
increased by a factor of #/8.

3. Algorithm For Character

Wordlength

The steps of the ACW(n) algorithm can be summarized
as follows:

Adaptive

1. The binary sequence is divided into blocks of an n-
bit length. If the length of the binary sequence is
not a multiple of 7, then the last block would have
less than 7 bits, so that it is padded with 0s. The
equivalent decimal value of each block is between 0
to 2"-1. In total, there are 2" possible values.

2. Calculate the number of the different values the
blocks may have (d), and the frequency or the
probability of occurrence of each block ().

3. If the number of the different decimal values (d) is
equal to or less than 256 (d < 256), then a n-bit
character wordlength can be used to convert or map
the blocks into character as follows:

a. Sort the blocks descendingly according to their
frequencies. So that the most common block
takes a 0 sequence number, and the least
common block takes a d-1 sequence number.

b. Convert each block to character according to
its sequence number, which in this case, lies
between 0 and d-1, and not according to its
equivalent decimal value.

c. Construct the header of the compressed data
file. The header includes the information,
which is necessary to restore the original
binary sequence during the decompression
process. This information, for example,
includes: (i) the character wordlength (n), (ii)

An Effective Method For Data Compression Based On Adaptive Character Wordlength 199

the number of padded bits (g), (iii) the number
of the different decimal values the blocks may
have (d), and (iv)

d. The equivalent decimal values of the
sorted blocks.

4. If d is more than 256, then a different value of »
should the examined. This process is continued
until; if possible, the above condition is satisfied. If
no value of n can be found that satisfies the
condition of d < 256, then the binary sequence can
only be converted to character sequence using an 8-
bit character wordlength.

4. The Adaptive Character Coding Format

The coding format that is used in converting a source
file to a binary sequence has an enormous effect on the
binary sequence entropy. Thereafter, it affects the bpc
required to represent characters in the compressed file
or the compression ratio that can be achieved.

A conventional coding format is the ASCII coding, in
which each character within the text file is represented
by 7-bit character wordlength. The length of the binary
sequence in bits is given by:

Nusen= 780 ®)

Another coding format is the Huffman coding. Using
Huffman coding, the length of the binary sequence
may be expressed as:

NC
Nrufy =So 2 i i ©)

i=1

Where N, is the number of symbols (character types)
within the source file.

£ is the frequency or the probability of occurrence of
the i" character,

w; is the number of bits representing the i character.

S, is the number of characters within the source file (or
size of the file in Bytes).

In this paper, a new coding format is introduced and
investigated, namely, the adaptive coding format. In
adaptive coding, first, the character frequencies are
calculated and sorted in ascending order from the most
common character to the least, similar to Huffman
coding. Second, the most common character is given a
0 sequence number, while the least common character
is given N,.-1 sequence number. Then, each character is
coded to binary according to its sequence number. For
example, the equivalent binary codes for the most
(first), second, and the third characters are 0000000,
0000001, and 0000010, respectively.

This form of coding ensures a low entropy binary
sequence, therefore, we expect a higher compression
ratio and lower bpc is required to represent characters
within the compressed file. In order not to get the data
mixed up during the decompression phase, the number

of the sorted characters and the characters themselves
should be included in the compressed file header. This
of course will add an overhead of not more than 129
bytes. It is clear that this overhead is small as
compared to the size of the data file.

5. The Adaptive Character Wordlength
(Acw(N,S)) Scheme

A new scheme that is developed to enhance the
compression ratio of the original ACW(#n) algorithm,
and eliminate all drawbacks that may degrade the
performance of the algorithm. In this new scheme, the
binary sequence is subdivided into a number of
subsequences (s) of variable sizes, each of them
satisfies the condition that d < 256, i.e., each
subsequence enfolds a number of blocks that have less
than or equal to 256 different decimal values.
Therefore, the new scheme is referred to as ACW(n,s).
Furthermore, each of the sequences will have it own
header that encloses the number of block, and the
number of different values (d) within this subsequence.
It should be noted that d is equal to 256 for all
subsequences, except the last one where it may be less
than 256. This adds an extra overhead that directly
proportional to s.

Subdividing the original binary sequence into
subsequences eliminates the first downside of d < 256
and consequently the agonize of having low success
probability if large values of n are used. But still, we
can not us¢ large values of n, because as n increases,
the size of the header of each subsequence is also
increased. Thus, an optimization mechanism is
required to find the optimum character wordlength.

In this adaptive coding format, an original character
is encoded to binary according to its frequency. This
encoding reduces the entropy of the binary sequence so
it grants higher compression ratios. However, the type
of coding used should be indicated in the compressed
file header. The ACW(n,s) algorithm can be used to
compress a sequence of binary data regardless of the
way that has been adopted to create the binary
sequence. Therefore, it can also be used as a
complementary compression algorithm for other data
compression algorithms. In particular, it can be used as
a complementary algorithm to statistical compression
techniques, where in such techniques, the characters in
the source file are converted to a binary code, where
the most common characters in the file have the
shortest binary codes, and the least common have the
longest, the binary codes are generated based on the
estimated probability of the character within the file.

Then, instead of compressing the generated binary
stream using 8-bit character wordlength, as it is usually
done, the ACW(n,s) algorithm can be used to further
reduce the size of the compressed file, thereafter,
enhances the compression process. The ACW
algorithm, in such cases, searches for the maximum

200 International Arab Journal of e-Technology, Vol. 2, No. 4, June 201

possible character wordlength » (n > 8), so that the
compression ratio can improved and approximately
increased by a factor of n/8 as it has been explained
above.

Storing this information in the compressed file is
very useful in two terms, first it ensures an accurate or
exact retrieval to the original data, and second it
enables a fast decompression as compared to the
compression process.

6. Analyzing The Performance Of The
Acw(N,S) Scheme

The compression ratio that can be achieved using the
ACW(n,s) can be expressed as:

So _ So So

C=—==— = : 10
Se Sl 16+SF+s(8+L)+L (19)
n

The above equation is a nonlinear equation, and C is a
function of » and s. As n increases, Sy and B behaves
differently. While B decreases, Sj; increases. Therefore,
there must be an optimum value for 7 where C would
have its maximum value. Due to the
Table (2) ponlinear nature of the above equation it is
difficult to be solved analytically, and only iterative
solution can be used to find the optimum value of .

7. Experiment Result And Discussion

In order to evaluate the performance of the ACW(7.s)
scheme, it is used to compress a number of text files
from standard corpora, namely, Calgary corpus,
Canterbury corpus, Artificial corpus, Large corpus, and
Miscellaneous corpus [4, 5, 16]. At this stage, little
effort has been taken to optimize the runtime of the
compression-decompression prototype code, therefore,
in this paper, we only compare and show the results for
the compression ratio.

7.1. Comparison Of The Compression Ratio Of
The Acw(N,S) Scheme With Other Data
Compression Algorithms.

In this experiment, the compression ratio achieved by
the ACW(n,s) scheme is compared with other data
compression algorithms, such as Huffman coding
(HU), fixed-length Hamming (FLH), Huffman
followed by fixed-length Hamming (HF), and the error
correcting Hamming code data compression
(HCDC(k)) scheme. The results presented are for text
file from the Calgary corpus (book1, and paperl).

The results for the ACW(n,s) scheme are based on
Huffman and adaptive coding formats. It is clear that
Huffman coding followed by the ACW(n,s) scheme
gives the highest compression ratio for both files, and
it is higher than Huffman coding followed by fixed-
length Hamming algorithm. But the compression ratio

based on adaptive coding provides nearly the same
performance as the other algorithms.

Table 1. Comparison of the compression ratio (C) between the
ACW(n,s) scheme and various compression algorithms.

Algorithm book1 paperl

HU' 1.724 1.595
FLH' 1.143 1.143
HF' 1.707 1.565
HCDC(k)* 2.543 (6) 1.895 (4)
ACW(n,s) — Adaptive coding | 1.674 (14) 1.542 (11)
ACW(n,s) — Huffman coding | 2.673 (11) 2431 (11

HU: Huffman coding.

FLH: Fixed-length Hamming.

HF: HU following FLH.

HCDC(k): The error correcting Hamming code data compression
scheme.

"Results for HU , FLH and HF are from [13].

2 Results for the HCDC(k) scheme are from [3].

Table 2 compares the compression ratio of the new
ACW(n,s) scheme with two adaptive schemes, namely,
the Unix compact utility that is based on adaptive
Huffman (AH) and the greedy adaptive Fano coding
(AF) for more text files [12]. The compression ratio of
the ACW(n,s) scheme based on Huffman coding is
higher than Unix compact utility, greedy adaptive Fano
coding, and error correcting Hamming code data
compression (HCDC(k)) scheme for all text files
examined. However, using the adaptive coding
provides a compression ratio that is very close the
three algorithms it is compared with.

Table 2. Comparison of the compression ratio (C) of ACW(n,s)
scheme and various adaptive compression algorithms.

ACW(n,s)
scheme
< 5
<
o
Bib 1.632 1.537 2.330
1526 | 1524 | 7 : "
2 (%) an | an
g bookl 1753 1750 2.543 1.674 2.673
=~ i 4 (6) a4 | an
o0 | book2 4 2.253 1.545 2.530
= 1.658 1.653
S ®) an | dan
paperl 1.895 1.542 | 2431
1.587 1.588
C)] an | dan
lice29.txt
N 1953 | 19as | 2397 | 1656 | 2643
2 ’ ’ O] (14) | an
=}
2 | asyoulik.txt 2.086 1.648 | 2.516
§ 1.648 1.645) (14) an
5 | lcetlO.txt 2.296 1.604 2.599
= 1.718 1.717
5 ®) a4 | dn
plrabn12.txt 2.554 1.750 2.667
1.769 1.766
(O] a4) | dy

AH: Unix compact utility.

AF: Greedy adaptive Fano coding.

HCDC(k): The error correcting Hamming Code Data Compression
scheme.

'Results for AH , AF are from [14].

2 Results for the HCDC(k) scheme are from [3].

An Effective Method For Data Compression Based On Adaptive Character Wordlength

Table 3. Comparison of the compression ratio (C) of ACW(n,s)
scheme for different coding formats.

2
5 S o 2
© 8 £ £ ==
2 £ =] £72 S8
g z % z° <°
S 2 =
=
= = =
@} @] @]
Bib 1528 (11) 1524 (11) 1.537(11)
book1 1.647 (14) 1.524 (11) 1.674 (14)
book2 1.531 (1) 1525 (11) 1.545 (11)
2| paperl 1.529 (11) 1.524 (11) 1.542 (11)
Q
o
g | paper2 1.637 (14) 1.524 (11) 1.641 (14)
on
S| paper3 1.611 (14) 1.522 (11) 1.616 (14)
paper4 1.615 (14) 1,519 (11) 1.616 (14)
paper5 1.526 (11) 1,519 (11) 1,539 (11)
paper6 1.549 (14) 1.524 (11) 1.551 (14)
é alice29.txt 1.650 (14) 1.524 (11) 1.656 (14)
Q
o | asyoulik.txt | 1.646 (14) 1524 (11) 1.648 (14)
=
5 | leetl0.xt 1.592 (14) 1.526 (11) 1.604 (14)
=1
<
O | plrabnl2.txt | 1.743 (14) 1525 (11) 1.750 (14)

Table 3 obtained the result for the compression ratio of
the ACW(n,s) scheme for different coding format
(ASCII coding, Huffman coding, Adaptive coding) for
two types of standard corpa (Calgary corpus and
Canterbury corpus). The results demonstrate that a
higher compression ratio is achieved using Adaptive
character wordlength.

8. Conclusion

This paper presents a description and performance
evaluation of new bit-level, lossless, adaptive, and
asymmetric data compression scheme, namely, the
ACW(n,s) scheme. It wutilizes the adaptive
character wordlength (ACW(n)) algorithm. » and s
refer to the character wordlength and the number
of subsequences into which the original binary
sequence is subdivided into, respectively. In
addition, in this paper, in order to further enhance
the performance of the ACW(n,s) algorithm, an
adaptive text-to-binary coding format is
developed. In this coding format, an
uncompressed character is coded to binary
according to its frequency, rather than its
equivalent ASCII code. Thus, a higher
compression was achieved, since this coding
format reduced the entropy of the generated binary
sequence.

201

References

(1]

(2]

(3]

[4]
[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

Adiego J., G. Navarro and et. , "Using Structural
Contexts to Compress Semi-Structured Text
Collections", Information Processing and
Management, Vol. 43, Issue 3, pp. 769-790,
2007.

Al-Bahadili H. and et., "An Adaptive Character
Wordlength Algorithm for Data Compression",
Journal of Computers & Mathematics with
Applications, Vol. 55]Issue 6, pp.1250-1256,
March 2008.

Al-Bahadili H. and et., “An Adaptive Bit-Level
Text Compression Scheme Based on the HCDC
Algorithm”, Proceedings of Mosharaka
International-Conference on Communications
Networking and Information Technology (MIC-
CNIT 2007), Amman-Jordan, 6-8 December,
2007.

Bell T. and et., "Text Compression", Prentice-
Hall Adv. Ref. Series: Computer Science, 1990.
Bell T. and et. , "Modeling for Text
Compression", ACM Computing Surveys, Vol.
21, No.4, pp. 557-591, 1989.

Freschi V. and et. , "Longest Common
Subsequence Between Run-Length-Encoded
String: a New Algorithm with Improved

Parallelism", Information Processing letters,
Vol. 90, pp. 167-173, 2004.

Gryder R. and et. , "Survey of Data Compression
Techniques", ORNL/TM- 11797, 1991.

Lansky J. and et. , "Compression of a
Dictionary”, Proceedings of the Dateso 2006
Annual International Workshop on Databases,
Texts, Specifications and Objects (eds. V. Snasel,
K. Richta, and J. Pokorny), Vol. 176, pp. 11-
20,2006.

Ravindra T. and et. , “Classification of run-length
encoded binary data”, Pattern Recognition, Vol.
40, pp. 321-323, 2007.

Rueda L. and et. , "4 Fast and Efficient Nearly-
Optimal Fano Coding Scheme", Information
Science, Vol. 176, No. 12, pp.1656-1683, 2006.
Salomon D., “Data Compression”, (Springer)
1997.

Shapira D. and et. , "Adapting the Knuth—
Morris—Pratt Algorithm for Pattern Matching in
Huffman Encoded — Texts", Information
Processing and Management, Vol. 42, pp. 429—
439, 2006.

Sharieh A., "An FEnhancement of Huffman
Coding for the Compression of Multimedia Files
", Tramsactions of Engineering Computing and
Technology, Vol. 3, No. 1, pp. 303-305, 2004.
Vitter J., "Dynamic Huffman Coding", Journal of
ACM, Vol. 15, No. 2, pp. 158-167, 1989.

202 International Arab Journal of e-Technology, Vol. 2, No. 4, June 201

[15] Witten 1., "Adaptive Text Mining: Inferring
Structure from Sequences", Journal of Discrete
Algorithms, Vol. 2, No. 2, pp. 137-159, 2004.

[16] Witten 1. and et. , "Arithmetic Coding for Data
Compression", Communications of the ACM,
Computing Practice, Vol. 30, No. 6, pp. 520-540,
1987.

Wiam Al Hayek was born in Amman, Jordan, on
January ,1981. She received the B.S. degree from
the Department of science . Al Balga Applied
University , Amman, in 2003. She received the

M.S. degree from the department of computer ,
Amman Arab University for Graduated Studies, in
2008. I worked as computer lab supervisor during
the period 2003 - 2007 within the university of Al
Balqa Applied University, after that | was lecturer
for different topics like (computer skills (1),
computer skills (2), visual basic , Internet, web
design , Programming in C++ language,
Introduction to Data Base , Programming in
ORACLE).

