136 International Arab Journal of e-Technology, Vol. 2, No. 3, January 2012

The Anatomy of a Domain-Specific
Search-Phrase Suggestion Tool for Literature
Digital Libraries

Sulieman Bani-Ahmad
Department of Information Technology. Al-Balqa Applied University, Jordan

Abstract Suggesting search terms in keyword-based search interfaces is becoming common place. Google Suggester,
for instance, in a history-based one as it provides suggestions to queries using a dynamic list of pre-saved popular
queries. However, this approach suffers from accuracy and efficiency problems. In this paper, the anatomy of a large-
scale efficient suggester for literature digital libraries is proposed. This suggester makes suggestion from the pre-
analyzed document collection to be searched. The proposed suggester promises providing human-like suggestions that
are automatically extracted from the repository of web documents, i.e. publications in the context of digital libraries
webpages in the context of the web. The proposed tool also provides an accurate term ranker to assign importance
scores to suggested keywords within the contexts where they are observed. The proposed tool promises a more scalable
and user-friendly search-keyword suggester when compared to its history-based competitors.

Keywords: Keyword-based search interfaces. Search-keyword Suggester, Google Suggest, the CompleteSearch engine.

Received March 7, 2010; Accepted March 9, 2011

1. Introduction

Search-phrase suggestion tools (SPST) help users to (i)
formulate their queries, (ii) explore alternative
spellings for their queries, and (iii) save keystrokes
[13, 3, 2], which is important to less-experienced or
older searchers. Studies show that web users spend
considerable amounts of time in search sessions to
properly select keywords [11], and to modify their
search keywords in order to successfully locate
documents that they are searching for. By utilizing an
efficient SPST users are less likely to face unsuccessful
search attempts. Figure 1 shows how Google Suggest,
an innovative feature by Google, can be useful through
suggesting terms for the user that helps him/her
accurately aggregate focused search terms.

‘ neural nej
neural network
neural network software
neural network tutorial
neural network matlab

neural network example
About 15,200,000 results (0.15 seconds)

Figure 1. Sample Google suggest refinements term “neural ne”.

In the case of web queries of search engines,
frequently, users are not sure as to how to characterize
the search using keywords [11], and gradually build
more focused search keywords that do not cause the

topic diffusion problem [7]. The topic diffusion
problem occurs when the provided search terms are
observed in multiple contexts. This fact caused that
documents from multiple and relatively topics appear
in the search results list.

One scenario where users find difficulty formulating
their queries is when a search term has synonyms that
the user does not remember. As an example, the “Big
O notation”, which is a mathematical notation used to
describe the asymptotic behavior of functions, is also
referred to as “Landau notation” or “asymptotic
notationn” |[i]. Another scenario is when the same
keyword has different meanings in different contexts,
i.e., polysemy [8]. This may force the user to add more
keywords to prune out irrelevant contexts. A possible
approach to solve these problems is to provide users
with immediate feedback on the digital library contents
as well as on how focused their search keywords are, at
an early stage, i.e., as they enter search keywords. In
this paper, we propose and evaluate such the
framework of a content-based SPST system.

In contrast with our approach, Google [2] provides
an SPST through Google Suggest (Figure 1) which
employs users’ search-history repository. Studies show
that this approach has multiple shortcomings that make
it inadequate for the literature digital library domain as
it affects both the way people search and what
keywords they use [26].

Content-based (CB-) SPSTs, as opposed to
Google’s Search-History-Driven SPST, have recently
received more attention [13, 4, 3]. In general, a CB-
SPST anticipates users’ search keywords by parsing

The Anatomy of a Domain-Specific Search-Phrase Suggestion Tool for Literature Digital Libraries 137

the document collection to be searched and preparing
offline refinements to search keywords.

In this paper, we present the framework of a CB-
SPST that improves the performance of the search-
engine auto-completion tools. The proposed overcomes
the shortcomings of Google Suggest.

2. An overview of the basic features of the
proposed CB-SPST

A CB-SPST is based on an a priori analysis of the
document collection to be searched and is optimized to
fit literature digital libraries. The proposed SPST
utilizes the following components:

1. An English language parser: to parse the document
collection using the Link Grammar parser, a
syntactic parser of English,

2. A domain-specific grouping tool for publications: to
group the publication based on their “most-specific”
research topics (using the notion of research
pyramid [2]),

3. A Token ranking tool: we use TextRank, a text
summarization tool, to assign topic-sensitive scores
to keywords,

4. Suggestions focusing tool: we use the identified
research topics to help user aggregate focused
search keywords prior to actual search query
execution.

2.1. The linguistic pre-processing step of the
proposed SPST

In the linguistic pre-processing step, documents are
tokenized to transform them into fokens. Later, when
forming complex tokens, i.e., combining more than
one token into one complex token, stopwords will be
used to produce syntactically and semantically correct
suggestions.

Example: Tokenizing the title "The Linear
Complexity of a Graph” generates the following
simple tokens (i) “the”, "of' and “a” which are
stopwords, and (ii) "linear", “complexity”, and "graph"
which are non-stopwords that are expected to appear in
user search queries. Stopwords are useful in forming
compound tokens through combining two or more
simple tokens at a time. For instance “linear
complexity” and "graph" can be linked using “of” to
form the full title. Simple and compound tokens then
serve as building blocks for expected user search
keywords.

2.2, Building the token-hierarchy and making
focused suggestions

The identified tokens are put into a token hierarchy.
During a search query session, the proposed SPST
gradually recommends search keywords by traversing
this token hierarchy. During each search session, the

Single Token Anticipator, STA, is used to make
recommend autocompletions based on the first few
letters entered by the user. The suggestion scope is
continually reduced based on the previously fed terms
within the same session. In the contect of literature
digital libraries, the suggestion scope is defined as the
set of most-specific research “topics” where
suggestions are extracted. The SPST guides the current
user towards building focused search keywords. In our
case, research topics are represented by research
pyramids, where a research pyramid is a set of
publications that are related to the same research topic
[2]. The token hierarchy involves the following levels

1. The single token level.

2. The keyphrases (compound token level)

3. The publication title level

4. The research pyramid level, each research pyramid
represents a specific research topic.

The proposed SPST uses the identified research-
pyramid structures to assign topic-sensitive
significance score to tokens and refinements. This
helps to propose refinements from research topics
where the user’s entered keywords are of most
significance.

The CompleteSearch engine SPST that is proposed
in [13, 3] works by building and index named HYB.
HYB is prepared by preprocessing the document
collection to pre-compute inverted lists of compound
tokens. ~ Compound tokens are identified using
proximity measures between words separated by w,
that is, the pre-determined window size. To maintain a
good level of locality of search, similar words are
placed in the same block within the index in the form
of document-word pairs. As the user enters his search
words, relevant blocks, i.e., blocks where search terms
are observed, are identified and, thus, (searching)
scope, or context, narrows down to only relevant
documents.

2.3 Summary- Comparing the proposed SPST
to its competitors

In summary, the main contribution of this paper is to
design and evaluate a CB-SPST that (i) eliminates the
drawbacks of Google’s search history-based SPST, and
(i) boosts the performance of the techniques used in
the CompleteSearch.

Since our proposal extends CompleteSearch
suggester, our approach maintains all the advantages of
CompleteSearch. For instance, our approach has an
excellent locality of access. Moreover, the completion
of subwords and phrases is automatically supported
since phrases are linguistically pre-computed.

Finally, our proposed tool does not only help user
refine his/her search terms, but also helps make search
keywords more specific, and thus reduces the number
of irrelevant documents appearing in the result set.

138 International Arab Journal of e-Technology, Vol. 2, No. 3, January 2012

3. Design Principles of the CB-SPST

The CB-SPST problem involves the anticipation of the
search keywords that the user is attempting to specify.
An SK-Suggestion query is a 5-tuple Q(W, I, R, B, B),
where W is all possible completions of the last word
that the user started typing, and R and I are the sets of
relevant topics (research pyramids) and compound
tokens from the preceding query. Bs and B, are
thresholds for the maximum scope and the minimum
popularity required to control the number of
suggestions made available to the user. Processing
query Q involves the following steps: (i) compute the
subsets W’ of W, and a word in W’ that occurs in at
least one compound token in I, (ii) compute R’ and I’
that form the set dominant research topics and
compound tokens respectively, where I" < | and R’
R. Alternatively, the user may choose to be shown a
fixed number of suggestions as in Google Suggest and
the CompleteSearch engine, in which case the query
becomes a 4-tuple of the form Q(W, I, R, B;).The main
design goals of the proposed SPST are:

o The SK-Suggester should provide instant feedback
to users prior to query execution. The primary goal
of the proposed SK-Suggester is to help focus user's
search term to what is already available prior to
performing the search, and thus reduce the time
spent on search failure. To meet this goal, the CB-
SPST should provide instant feedback as to how
focused the search keywords are to the user, prior to
query execution.

o The SPST should suggest linguistically valid search
keywords. For that, we utilize an English language
parser to tokenize and parse the digital library
collection contents, and to build linguistically valid
search keywords. An alternative approach, used in
the CompleteSearch engine [13, 3], is to show the
user snippets of text; however, this approach needs
preprocessing and more effort by the user to
interpret them.

o The SPST should provide guidance to the user, as
(s)he builds up the search keywords. We achieve
this by providing statistics on the search output prior
to search execution. The proposed SPST provides
the user with (i) the scope of each of the search
keywords (i.e. the set of papers to be returned),
which also warns the user against keywords that are
very common and may lead to large search outputs.
Notice that the number of documents where search
terms are observed is not a good indicator of how
focused search keywords are. Given that the user is
interested in a particular research topic, some
research topics (represented as research pyramids)
are large because many researchers are working on
that topic [2], and thus large numbers of documents
may be found relevant to a user query.
Consequently, the fact that a search keyword is

observed in large numbers of documents does not
necessarily indicate that the keywords are not
focused enough. A better indicator of how focused
search keywords are, is the number of relevant
research topics, which is the number of research
pyramids.

o The SPST should work online efficiently, and
suggest refinements to keywords on the fly. For
efficiency, we need to parse only properly selected
parts of each document in the collection, and
recognizes nouns, adjectives and verbs a priori.
Further, all of the time consuming tasks are
performed offline.

4. Constructing Token Hierarchy
4.1. The Linguistic pre-processing step

We first present a number of natural language (English
Language properties and definitions that will be used
throughout this paper.

English Language property 1: Simple Sentence types
include (1) declarative, (2) interrogative, (3)
imperative, and (4) conditional types. Compound
sentences have the format “<simple sentence>
<conjunction> <simple sentence>”. Declarative
sentences consist of a subject and a predicate. Subject
may be simple (i.e., consists of a noun phrase or
nominative personal pronoun) or compound (i.e.,
consists of multiple subjects combined with
conjunctions).

Figure 2 shows the parser output for the title
"Outlier detection for high dimensional data” with
multiple linkages identified within the title. Each
linkage represents a linguistic relationship between two
tokens (see English Language Property 3 next). A full
list of linkages that the parser can identify is available
in [12]; however, only a few of them are common and
observable in publication titles.

+m———AN-———+

| | | | |
outTier.n detection.n for.p high.a dimensional.a data.n

Figure 2. Link-grammar parser output.

To suggest linguistically valid keywords, we utilize
the linkages identified by the parser to form compound
tokens out of simple tokens. The following definitions
and observations form the basis of our discussion on
how the token hierarchy is built.

Definition: A simple token is a categorized block of
text consisting of indivisible characters. A compound
token is a linguistically valid combination of one or
more simple tokens.

As an example, "sort", "merge" and "join" are
simple tokens. "sort-merge" and "sort-merge-join" are
linguistically valid compound tokens; but, "join sort-

The Anatomy of a Domain-Specific Search-Phrase Suggestion Tool for Literature Digital Libraries 139

merge" is linguistically invalid as the adjective should
precede the noun in English.

Note that, not all linguistically valid compound
tokens are “observed” in a digital library. For instance,
"merge-sort join" is linguistically valid, but there is no
such join algorithm in the data management field. We
will refer to linguistically valid, but not necessarily
observed, compound tokens as unrealistic compound
tokens.

English Language property 2: Part-of-speech token
types include (1) articles, (2) nouns (subjects or
objects), (3) adjectives, (4) adverbs, (5) pronouns, (6)
conjunctions, (7) verbs, and (8) prepositions.

To form realistic compound tokens, we identify
part-of-speech tokens that are linguistically adjacent.
The goal is to make keyword suggestions that make
sense to the user. We use the link-grammar-based
parser proposed in [12] to identify linguistically
adjacent tokens and build the token hierarchy of the
publication set.

English Language property 3: Possible /inguistically
adjacent or related token type cases include (1)
(subject, verb), (2) (verb, object), (3) (adjective, noun),
(4) Compound subjects, (5) Compound objects (6)
(noun-possessive, noun), (7) (article, noun), (8)
(adverb, verb).

Example: the title "Adaptive Rank-Aware Query
Optimization in Relational Databases" has the
following compound tokens. (i) (Adjective, noun):
"relational databases", (ii) (compound adjective):
"rank-aware", (iii) (adjective, noun) "adaptive query",
(4) "query optimization". Note that more complicated
combinations of tokens are also possible, e.g., (i)
(compound subject, verb), (ii) (verb, compound
object), or (iii) (simple subject, verb, object).

A full list of all linkage-types can be found in [12].
Building blocks of the token hierarchy are nouns,
adjectives and verbal nouns (which are sometimes
identified as verbs or gerands by the parser). These
linkages are used to build meaningful compound
tokens. The token hierarchy is constructed by
collapsing the observed linguistically adjacent tokens
into compound tokens. Any two tokens that are linked
via a linkage are considered to be linguistically
adjacent even if they are separated by other tokens or
stopwords. A super-linkage, that is, a linkage that
encompasses one or more linkages, is used to construct
further compound tokens. We give an example.

Example (using linkages to form recommendations):
Figure 3 shows the parser results for the title "a model
for querying annotated documents". Two levels of
linkages are identified: (i) the 'A' linkage is at level 1
and used to form the compound token "amnotated
documents", (ii) the super-linkage 'OP' at level 2
(which encompasses the 'A' linkage) is used to form
the compound token "querying annotated documents".

+-Ds—+
|
a

model.n for.p guerying.w annotated.v documents.n

Figure 3. levels of linkages and super-linkages.

4.2. Topic-Sensitive = Token Weight and
reducing the topic diffusion problem

Each user search session can be viewed as aiming at
finding information about a specific topic. This implies
that the user's suggestions of search keywords should
be chosen as close to the topic being targeted as
possible. However, the topic being targeted is
unknown to us.

If the SPST fails to focus search terms and choose
them from most related research topics, the search
results of the digital library will most-likely be
topically diffused. Consider the following example
(figure 4). The following figure shows a sample search
result for the query ‘topic diffusion problem in
information retrieval’ run against ACM digital library.
The output shows only the top 200 relevant
publications, and the relevancy score of all retrieved
publications are the same. However, not all of them are
related to the search terms provided by the user
possibly because the proposed search keywords
provided by user involve multiple sub-topics mixed
together.

Search: & The ACM Digital Library © The Guide

topic diffusion problem in infarmation retrieval

2n IR-9 {infoi an retrieval). IR m 7 Reqularizing ad hoc retrieval i

1 [Papei
6\ SCores
Fernando Diaz
October 2005 Proceedings of the 14th ACM international conference on
Information and knowledge management CIKM '05
Publisher: ACM Press

Fulltext available: .E Qi1 2,26 KB Additional Information: ‘?!F",ahr‘ |
ey

The cluster hypothesis states: closely related do
the same request, We exploit this hypothesis dir
scores from an initial retrieval so that topicall,
scores, We refer to this process as score regularization. Score regularization can be
presented as an optimization problem, allowing the use of results from
semi-supervised learning. We demanstrate that regularized scores consistently and
significantl ...

ances, citings,

nents tend to be relevant to
v by adjusting ad hoc retrieval
ed documents receive similar

Keywords: clustering, manifold learning, pseudo-relevance feedback, regularization

200 Examining RFID applicatiol Jpply chain management i
@ Fred Miederman, Richard G. Mathieu, Roger Marley, Ik-Whan Kwon

July 2007 Communications of the ACM, velume 50 Issue 7

Publisher: ACM Press

Full text available:

| Htrn.\f;l? 54 ¥;’B‘\ Additional Infarmation: full citation, abstract, references, index terms

Technology infrastructure, business process, and managerial issues must be
addressed by IT practitioners as they adapt to the business changes associated
with the diffusion of RFID technology in the supply chain.

Figure 4 A query that illustrates the topic diffusion problem.

To remedy this problem, the proposed SPST uses
the already entered search keywords to prune out
topics (i.e. research pyramids) where these keywords
are not or rarely observed. We refer to this
phenomenon as the locality principle of search.

140 International Arab Journal of e-Technology, Vol. 2, No. 3, January 2012

Observation: (The locality principle of search):
Within a single search session, the user targets
documents within a specific topic.

This principle allows us to narrow down the
suggestion scope as the user enters more search
keywords. The token-hierarchy relation is then
accessed once in between keystrokes each time the
user modifies the search keywords by typing one more
character. Given our hypothesis that the document(s)
that the user is looking for belongs to a specific
research topic or few related topics, we can reduce
dramatically the diversity of the collection set by
suggesting keywords from the most relevant research
topic(s), which we refer to as the suggestion scope.
One issue is that a term may be used in more than one
research topic. To solve this problem, we weigh tokens
within each research topic. The goal is to identify the
significance of tokens in each research topic, and thus
prevent search-keyword refinement from topics where
keywords are of lesser significance.

To weigh tokens in each research-pyramid, we use
the TextRank algorithm [9]. Briefly, TextRank
algorithm constructs a graph between a properly
selected set of tokens of a document (nouns and
adjectives), where an edge between two tokens exists
only when they co-appear together in a window of
some size. Then we apply the PageRank algorithm on
the formed graph to identify the most important tokens.
PageRank is an algorithm applied on graphs to
measure relative importances of vertices [5]. Finally,
phrases are manually constructed out of the top-scored
tokens; these phrases represent keyphrases of the
document.

We use TextRank at research pyramid level to
compute topic-sensitive significance score of terms.
We apply TextRank on each research pyramid r» as
follows. (i) The titles of all publications that belong to
r are tokenized and annotated with part-of-speech tags
using the link-grammar parser [12]. (ii) The tokens are
filtered through a syntactic filter which selects only
lexical units of certain parts of speech, namely; nouns
(as well as verbal nouns and gerands) and adjectives,
that give the best results [9]. (iii) A graph G.(V,E) is
formed using the tokens returned by the filter. V, or the
set of vertices, is the set of tokens. E, i.e. the edge list,
is constructed such that an edge is created between any
two tokens that appear in the same title. (iv) PageRank
[5] is used to measure relative importance of all tokens.
Tokens that have high PageRank scores are expected to
be more significant and better representatives of the
research pyramid 7.

5. Suggesting Search Keywords

The task of recommending search terms and
autocompletions is performed online; thus, real-time
performance is critical. Notice that and SPST is
triggered online “in-between keystrokes”. After each

keystroke, the search terms already entered can be
passed to CB-SPST through an AJAX-enabled
interface. The Single-Token-Anticipation (STA) and
the Query-Refinement (QR) Modules of the CB-SPST
at the server side process these search terms. An
AJAX-enabled search interface is needed in this case
in order to provide an immediate, flexible, and
responsive interaction [14, 4]. In more details, online
steps of our approach are:

1. Single token anticipation. The STA Module is
triggered each time the user starts entering a new
search keyword. This module suggests completions
to the incomplete term entered by the user from the
current suggestion scope (by using R and 1 in
definition 1). At the beginning, the suggestion scope
is all the research pyramids and all the compound
tokens, which is the most time-consuming step [3].

2. Search keyword refinement suggestion. The QR
Module suggests the top-scored compound tokens I
to the user as possible refinements to the user’s
search terms.

3. Focusing suggestion scope: In this step, the subsets
R’ and I’ are computed and saved in the search
session status structure to be used in query
refinements after the next keystroke. This task is
responsibility of the feedback module.

4. Post-processing suggestions: the Presentation
module of the CB-SPST is responsible of properly
presenting the suggestions to the user. This specific
task is performed at the client-side. This should
make the search suggester to be more scalable.

5.1. Important performance-related notes

Next, we list and discuss the advantages of our
proposed framework as compared to the
autocompletion tool proposed in [3]:

1. Tokens, simple and compound, observed in the
same research pyramid, or multiple strongly related
research pyramids, are stored within the same block
as in [3]. This gives better locality of search and
reduces 1/O operations especially after suggestion
scope reduces to few relevant research pyramids.

2. A term may be used in more than one research
topic. To solve this problem, we weigh tokens
within each research topic. The goal is to identify
the significance of tokens in each research topic,
and thus prevent search-keyword refinement from
topics where keywords are of lesser significance.

3. In [3], suggestions are presented to the user as
snippets of text from the documents in the LDL.
This puts an extra burden on the user to isolate
useful information from the presented text. Users
usually type fast and may not have enough time for
post-processing the presented suggestions. In our
case, the repository is linguistically preprocessed to
identify compound tokens, or compound tokens,

The Anatomy of a Domain-Specific Search-Phrase Suggestion Tool for Literature Digital Libraries 141

that will be presented to the user isolated from the
surrounding text.

4. Scalability: in order to suggest phrases instead of
single words, Bast and Weber [3] use text-based
adjacency (within a predetermined window size) as
an indicator of token-to-token proximity. We
observed that this proximity measure generates long
lists of possible phrases which (a) significantly
increase the index size [3]; this problem is solved by
viewing the auto-completion problem as a multi-
dimensional range searching problem [3] and (b)
may result in meaningless phrases. Our proposal
uses linguistic adjacency (see English Language
property 3) which produces meaningful and much
smaller lists. Consequently, our approach is more
scalable.

In order to match completions with the being entered
query word, Bast and Weber [3] store the positions of
terms within each document in an array separate from
the index. We refer to this technique by the text-based.
Online processing of this extra array takes time. In our
case, we use linguistic linkage-based proximity of
tokens to build compound tokens. This gives more
realistic and better results as tokens (nouns and
adjectives, for instance) may be separated by
intermediate words but still linguistically related. Thus,
depending on the assigned proximity window, some
close terms may be missed in the case of small widow
sizes, or false positives may appear in the case of big
window sizes. Our approach, in some sense, uses
proximity windows with variable sizes.

5.2. CB-SPST Query Execution

Compound tokens are used as refinements to user
queries, and vary in their sizes. To avoid proposing a
long suggestion, compared to user search terms, we
propose a gradual expansion of the user query as
follows. Given user’s search terms W, refinements of
length up to ef* |W| are presented to the user, where ef
is the expansion factor, and |W]| is the number of tokens
in W.

We empirically observed that initially choosing the
expansion factor to be 1.5 gives good results allow for
a gradual expansion during user’s search term
construction. However, when the user chooses terms
that are separated by a relatively large distance, i.e.,
separated by long series of words which is the case in
large compound tokens, a particular choice of an
expansion factor may fail to retrieve refinements. To
remedy this problem, we propose dynamically
choosing ef through probing as follows. First, we
choose ef=1.5. If no suggestions can be retrieved, the
value of ef is increased up to ef;,.x which is chosen as
the length of largest compound token observed. The
amount by which ef is increased is left to the LDL
server to estimate, based on how many online users are

available and whether real-time performance is
achieved or not.

5.3. Guiding Statistics

Next we present a list of statistics that are used to
guide the user selection of search keywords.
Suggestion Scope: Research Pyramid based
suggestion scope considers the number of research
topics (or research pyramids) where the search
keywords w are observed, that is, the scope is

Scope(w)=(# of RPs where w appears)

Topic-Sensitive Popularity of Search Keywords: For a
set of words (W?), the topic-sensitive popularity of W’
with respect to the topic represented by some research
pyramid r, i.e., TSP(W’, r), is computed as the sum of
TextRank scores of all words in W’. TextRank scores
are topic-sensitive and computed within each research
pyramid r. The suggestions are retrieved from
dominant research pyramids computed by the feedback
module in figure 8.

Query refinements (W?) are presented to the user in
the order of their matching scores.
One more statistic used is the Specifity of Individual
terms. Specifity of token 7 is measured as

Specifity(t)=-log[(# of Docs where t
appears)/(total # of Docs)]

We use this number to color user’s already entered
terms to indicate how general his/her individual search
terms are. This helps when user’s search terms consist
of stopwords or terms used in a wide range of research
topics.

6. Experimental Results

Our experiments are conducted on a prototype digital
library with a repository of around 15,000 publications
from ACM SIGMOD Anthology, a digital library from
the field of data management. Publications titles of this
collection were analyzed and parsed by the Link-
Grammar parser, a syntactic parser of English, that is
developed at Carnegic Mellon University and proposed
in[11, 12].

6.1. Linguistic Pre-processing and Quality of
Suggestions

In the following example, we show how the proposed
SK suggester also serves in early construction of
successful search keywords for k-word proximity
search, which is a very useful technique in narrowing
down the results to more relevant ones, and at the same
time allowing users to better express what they are
looking for [6, 10].

Example (k-word Proximity Search): In figure 5,
notice that the search keywords “query graph” are
already identified as one compound token. Suggesting

142 International Arab Journal of e-Technology, Vol. 2, No. 3, January 2012

query refinements based on compound tokens may
help towards a successful proximity search. Notice that
item (3) is probably irrelevant to the query at search
time since this publication most probably belongs to
different research pyramid from the first and second
hits; this false positive is pruned or pushed down in
ranking query results. Informing users of the linguistic
proximity of search terms prior to query execution can
thus be useful. Furthermore, informing the user of the
order in which terms appear may help eliminate false
hits like hit (4) in figure 5, which is called k-word
ordered proximity search [6].

(1) Multiple Query Processing In Deductive Databases Using Query Graphs
(2) Query Graphs Implementing Trees And Freely Reorderable Outerjoins
(3) Effective Graph Clustering For Path Queries In Digital Map Databases
(4) Query By Diagram, A Graphic Query System

Figure 5. Possible hits of the query “query graph”.

Linkages are used to construct compound tokens.
This technique generates significantly smaller numbers
of constructs than the text-based adjacency used in
Bast and Weber [3]. For instance, by parsing the titles
of around 9 thousand publications from the repository,
5,652 tokens were retrieved (6,896 tokens including
stopwords). And, around 5 thousand compound tokens
are constructed. Considering text-based adjacency
using the same window sizes generated 220,000 of
links between tokens. These links are to be processed
further to identify the most significant compound
tokens.

The value of using linguistic pre-processing to
identify compound tokens comes from the quality of
pre-computed compound tokens that can be
constructed. Along with the post-processing required
by the text-based adjacency approach, both factors
balance the time needed to perform the linguistic pre-
processing step (which is done offline).

6.2. Convergence of Suggestion Scope

One more factor that is critical in producing search-
keyword suggestions in realtime is the locality
principle of search and the convergence speed of the
suggestion scope.

Figure 6 shows the distribution of scope of the
observed filtered tokens, i.e., excluding the stopwords.

Observation (figure 6): Filtered tokens have limited
scope.

The above observation is important as it
significantly affects the QR module performance.
Considering this observation, we may prune the scope
of the suggestions, which is the set of dominant
research pyramids from where suggestions are
retrieved.

Histogram of NoOfRPIDs per tokens after filtering

5000

40004

Frequency
w
o
(=]
<

[N]
o
=]
S

1000

Ml

0 70 140 210 280 350 420 490
NoOfRPIDs

Figure 6. Distribution of token scope (after filtering).

Notice that some research topics may have wide
range of origins. This makes the diversity of terms
used in such research topics wide as well. For example,
the publication "TextRank: Bringing order into text"
has origins in linguistics (tokenizing and parsing),
graph theory and graph-based ranking.

To measure how wide and diverse the origin of the
research topic (or a research pyramid) r is, we use the
notion of RP coverage computed as follows:

Coverage(r)= -log[(# of tokens used in r)/(total #
of tokens)]

This means that the higher the coverage factor of r is,
the less diverse its tokens become. Zero coverage of r
indicates that all tokens ever observed in the collection
are used in r.

K gramof RP Covg e

500

400 -

3001
]

E 200

100

=3 0.0 15 3.0 45 6.0 7.5
RP Coverage

Figure 7. Distribution of RP coverage.

Figure 7 shows the distribution of coverage values of
all research pyramids. Coverage values range between
3 and 8, which means that (i) the tokens within each
research pyramid are of low diversity, and (ii) this
signifies the importance of ranking tokens within
research topics. This serves in pushing refinements
extracted from dominant research topic(s) up in the
suggestion list. We achieve this goal by using the
topic-sensitive popularity (TSP) of search terms to
order the list of computed refinements.

One critical factor that affects the STA module
performance is the speed of convergence of the

The Anatomy of a Domain-Specific Search-Phrase Suggestion Tool for Literature Digital Libraries 143

suggestion scope at the beginning of each search
session.

We have experimentally observed that, usually
within 3 characters entered by the user, the suggestion
scope significantly decreases. We have also observed
that the suggestion scope of STA reaches a saturation
region within 4 characters entered by the user.

Figure 8 shows the distribution of specifity values
of all tokens extracted from the document collection.
High specifity value of a token ¢ indicates that 7 is
observed in many. Figure 8 shows that high percentage
of observed tokens have high specifity values, and
thus, may lead to large search output lists. This further
signifies the importance of warning users against such
popular tokens and encourage him/her properly choose
tokens of lesser specifity values.

“ s logram of Specifity/@il = oe Ly (All-SW)
1;2 2..4 3..6 4..8 6,]0 7'.2 8.‘4
Specifity(All) Specifity(All-SW)
3000
o o
2500
> 2000
2
]
3
g 15001
i
1000 -
. °
5001 . o
.. (]
. PP —— Woee®
1.2 24 3.6 4:8 6.I0 7.'2 8.'4

Figure 8. Distribution of specifity values of (a) all tokens (left) and
(b) all tokens except stopwords.

Figure 9 shows TextRank score distribution of all
simple tokens that pass through the syntactic filter.
High TextRank scores indicate popular and more
significant tokens. Thus, tokens that score high (>0.8)
are content-bearing and better represent the research
topic of the corresponding research pyramid. At the
other extreme, low-scored tokens are usually widely
used tokens.

Histogram of TextRank Score of Tokens

14

124

Percent

000 014 028 04 056 070 084 098
TextRank Score Bins

Figure 9. Distribution of TextRank scores for simple tokens.

We use topic sensitive popularity scores of tokens to
order computed refinements such that the most
relevant refinement from dominant research pyramids
appear close to the top of the suggestion-list.

Since the post-processing module processes the
final selected list of single token completions and the
computed refinements, it is scalable and takes constant
time to finalize the suggester output in the proper
HTML format. Further, this module can be run at the
client side using client-side scripting language.

7. Conclusions

We have proposed a content-driven search-keyword
suggester and autocompletion tool. We have shown
that the proposed framework, which is optimized to
work on literature digital libraries, promises a more
scalable, high quality, and user-friendly search-
keyword suggester when compared to its competitors.

References

[1] Bani-Ahmad, S. and Ozsoyoglu, G.: “elGiza, A
Research-Pyramid Based Search Tool for
Vertical Literature Digital Libraries”, DBRank
2008.
http://dx.doi.org/10.1109/ICDEW.2007.4401002

[2] Bani-Ahmad, S. and Ozsoyoglu, T: “Improved
Publication Scores for Online Digital Libraries
via Research Pyramids”, ECDL 2007.

[3] Bast, H. and Weber, 1.: “Type less, find more:
fast autocompletion search with a succinct
index”. SIGIR 2006: 364-371.

[4] Bast, H.; Majumdar, D.; and Weber, 1.: “Efficient
interactive query expansion with complete
search”. CIKM '07.

[5] Brin, S. and Page, L.: “The anatomy of a large-
scale hypertextual web search engine”, Computer
Networks and ISDN Systems, 1998.

[6] Gupta, C.: “Efficient K-Word Proximity Search”,
MS Thesis, CWRU, EECS Department, 2008.

[7] iProspect Inc.: “iProspect Search Engine User
Behavior study”, iProspect 2006.

[8] Krovetz, R.: “Homonymy and polysemy in
information retrieval”. In Proceedings of the
Eighth Conference on European Chapter of the
Association for Computational Linguistics
(Madrid, Spain, July 07 - 12, 1997). European
Chapter Meeting of the ACL.

[9] Mihalcea, R. and Tarau, P.: “TextRank: Bringing
Order into Texts”, in Proceedings of the
Conference on Empirical Methods in Natural
Language Processing (EMNLP 2004), Barcelona,

Spain, July 2004.

[10] Sadakane, K. and Imai, H.: "Text Retrieval by
Using k-word Proximity Search,", 1999
International ~ Symposium on Database

144

[11]

[12]

[13]

International Arab Journal of e-Technology, Vol. 2, No. 3, January 2012

Applications in Non-Traditional Environments
(DANTE'99), 1999.

Sisson D.; “A Thoughtful Approach to Web Site
Quality”, http://www.philosophe.com/
Temperley, D.; Sleator, D., Lafferty J.; “Link
Gramar Parser 4.17 -
http://www.link.cs.cmu.edu/link, 2005.

The CompleteSearch engine, http://search.mpi-
inf.mpg.de/

Wusteman J. and O'hlceadha P.: “Using Ajax to
Empower Dynamic Searching”, Information
Technolgy and Libraries, Vol. 25 No 2, June
2006, PP 57-64.

Sulieman Bani-Ahmad has
received his B.Sc. degree in
Electrical Engineering / Computer
Engineering from the department of
Electrical ~ Engineering Jordan
‘ University = of Science and
technology in 1999. He received an
MS in Computer Science from the school of
Information Technology at Al-Albayt University in
Jordan, in 2001. He received his Ph.D. degree in
Computing and Information Systems from the
department of Electrical Engineering and Computer
Science at Case Western Reserve University,
Cleveland - Ohio, USA, in 2008. He is presently an
assistant professor at Al-Balqa Applied University.
Bani-Ahmad's research interests cover topics from
Web-computing and high performance computing.

