
78                                                                                        International Arab Journal of e-Technology, Vol. 5, No. 2, June 2018 

 

 

Prevent XPath and CSS Based Scrapers by Using 

Markup Randomizer 
 

Ahmed Diab, Tawfiq Barhoum 

Islamic University of Gaza, Gaza, Gaza Strip, Palestine 

 
Abstract Web Scraping may consider as data theft action, several researchers have introduced some approaches for 

addressing this issue. These solutions could solve the problem in partial ways and sometimes, solution cannot be applicable 

with modern web techniques. Consequently, in our work we have introduced a new approach for stopping web scraping in 

an efficient way and applicable with modern web techniques called Markup Randomizer, which changes the HTML and CSS 

in proper way randomly in timely manner. The best feature of our model is that each web page can use it without paying any 

efforts or restrictions in web site markup. Experiments done over collected dataset which consist of 30 websites divided into 

three categories: News, Currency Rates and Weather. The proposed model based on Markup Randomizer applied over this 

dataset. The aim of the experimental is to measure the Similarity, File Size and the time. During testing the proposed model, 

we get that a change on the markup done up to 50%, file size is changed and optimized after during the process. The   

required time to applying the model and generating the new markup is good and up to 2 minutes. Finally, we find that our 

proposed markup randomizer is accepted. 

 

Keywords: Anti-Scraper, Anti-Data Theft, Web Scrapers 

 

Received August 1, 2018; Accepted September 5, 2018 
 

1. Introduction 

Web scraping is the process of extracting the 

information of the web pages, this process simulates 

human attitude when he opens the website but it differs 

that it automated process done using HTTP protocol or 

by embedding a web browser. Web Scraping is a 

process like web index "search engine function" which 

indexes websites information using its bots. In 

contrast, web scraping extract specific information is 

related to the webpage itself but in case of search 

engine they take only meta tags if exists from the 

website [7, 16]. 

Due to the richness of webpages information and 

the increasing of need of data exchanging among the 

web in automated fashion, the first web scraper has 

developed and has inspired from search engine bot 

functionality.  

Web scraping tools can be used in ethical and 

unethical way, firstly when it is used for research 

purposes and without taking over the privacy and 

copyright and the other when some people take content 

from some websites and repost the content on their 

websites particularly when the content is unique and 

creative. 

Web Scraping is very useful technique  helps   

researchers in many fields to improve their data and 

knowledge, one of the most practical fields is for 

weather forecasting they used the scrapers to get 

historical data about the weather [2]. 

Another usage of the web scrapers [7] is for the new 

Startups because of the lack of time, the need of data  

 

and the limitations of resources they do prefer to use 

the web scraper to scrape data from similar websites 

initially then they can update the scraped data 

whenever they need to. This is not fair for content 

owners who have the ownership right of the data itself 

such as innovative content and patents. By the time, 

this issue caused many   losses for them in multiple 

fields as Data Theft, Intellectual Theft, and Economic 

Lose. So this type of unauthorized usage may have 

classified as Data Theft (is the act of stealing 

computer-based information from an unknowing 

victim with the intent of compromising privacy or 

obtaining confidential information) which is harmful 

unethical problem with destructive effects for the 

companies. 

As a result, web scraping becomes a curial problem 

need to be solved and so far, to my knowledge there 

are few solutions proposed to solve this problem. 

Researchers [14] have introduced an invention for 

preventing scraping by using a filter that reproduces 

the data requested by the client in an unstructured 

manner, which could be understood by browsers, but a 

robot with scraping software can't deal with it in order 

to get the desired data. Other researchers [5] have 

introduce a compound solution based on filtering the 

visit to three categories (Black-List, Gray-List, White-

List) and then treat with the visitor depends on his 

category. Gray-List contains the suspicious visitors, 

which are subjected to several techniques to decide 

whether block or not. 



Prevent XPath and CSS Based Scrapers by Using Markup Randomizer                                                                                      79 

 

Other solutions [10-12] was provided as commercial 

tools by developers but they hide all the technical 

information and offer it without any documentations.  

In our proposed solution, we will prevent CSS and 

XPath scrapers because the most of scrapers based on 

CSS and XPath technique in extracting data from 

websites. This can be done by using the markup 

randomizing which will change the HTML and CSS 

files automatically in a timely manner to be different in 

markup and the same in the result. Therefore, the 

scraper rules will be meaningless because it treats the 

webpage, as a new webpage and the scraper should 

take an action to update the rules at each time they 

access the webpage. Because of this technique, the 

scraper will stop functioning well and stop to scrape 

these pages. 

2. Background 

2.1. Web Scraping 

After defining the Web Scraping term, Web scraping 

process contains three main processes (Web Crawling, 

Web Scraping, Saving the data) as shown below in 

Figure 1. The first part of the scraping process is Web 

crawling, which means the process of navigating the 

webpages, and finding the links in the web page, this 

will   enable you   to reach each page as well as links 

recursively in the page. The second process is the heart 

of the web scrapers, which means to extract the data 

from the web page by using predefined rules based on 

one of the following techniques (XPath & CSS, 

Regular expression or semantic rules). Finally, the data 

saving is the extracted data on file or database. 

 
 

 

 

 

 

Figure 1. Web Scraper Architecture. 

2.2. Web Scraping Techniques 

There are a lot of web scraping techniques are used by 

the scrappers around the world and classified into few 

categories by the behavior of the scrapper and the 

anatomy of the data as the following: 

2.2.1. Web Usage Mining 

The term “Web usage Mining” refers to the automatic 

discovery and analysis of patterns in clickstream and 

associated data collected or generated as a result of 

user interactions with Web resources on one or more 

Web sites. 

They show that we can extract the data for web 

usage using web server log and show how much 

knowledge we can get if we analyze the data by using 

a specific software such as "Nihuo Web Log 

Analyzer". We can take a deep view of the visitor 

attitude and here is some   reports from the analyzer. 

2.2.2. Web Scraping 

Converting unstructured information into structured 

information and stored into central 

database/spreadsheet. This can be done and specified 

by using one of the scrapers of embed a browser into 

application and then define the criteria and targets for 

extracting and grapping. 

2.2.3. Semantic Annotations 

Annotations or Meta data used to locate data within the 

document, so we can prepare a list of semantic data 

and define a layer for the web scraper before scraping 

data. 

Another technique was very common in most papers 

and implement in most scraping tools which is DOM 

based manipulation and accessing data by XPath and 

CSS because it’s the easiest and simplest technique and 

supported by most programing languages and treated 

like the XML processing. Because of that, they 

encouraged to build their scrapers on those techniques 

and proposed their approach of scraping data on the 

bases of DOM manipulation and different in the 

architecture of the methodology, programing language 

or even used tools. 

2.2.4. The Custom Scraper 

Python based scraper consists of three parts of the 

process, first part is web crawler, the second is data 

extractor, and the last is the storing method. They have 

built the scraper with new concepts to full-fill the new 

startup need as they need very much data but with no 

time to collect, so they need an efficient and speed 

tool.  

Web Crawler is a tool or a set of tools that 

iteratively and automatically downloading webpages 

also extracting URLs from their HTML and fetching 

them recursively [13]. So we need to have a list of 

URLs to be visited ,this list will be called as a seed 

[10], each page will be visited and also all links inside 

each particular page will be extracted to the list "seed" 

again to be visited, most of Web Crawlers contains the 

following parts: 

1. Downloader: the process to download the pages. 

2. Queue: contains the list of URL to download. 

3. Scheduler: is the process to start and organize the 

downloader. 

4. Storage: is the process to extract the Meta data of 

the web page and save it as well the text of the web 

page. 

Data Extractor The process of extracting information 

from a single web page, although we have a lot of uses 

we will focus to extract specific data or predefined 

Web Crawling 

Data Extracting 

 

Data Saving 

 



80                                                                                        International Arab Journal of e-Technology, Vol. 5, No. 2, June 2018 

 

rules. They achieve this goal by selecting the data 

using CSS Selectors or XPath patterns. 

Exporting to CSV After we have crawled the pages 

and extracted the data, we will have a list of extracted 

information stored in memory, we just need to save 

them to CSV using Python API. 

1. Scrapple 

Scrapple a Flexible Framework to Develop Semi-

Automatic Web Scraper, the main purpose and 

contribution of Scrapple is to reduce the required 

modifications on the scripts to run the scraper like 

Scrapy. 

2. Extracting Entity Data from Deep Web Precisely 

Researchers have proposed a model for web data 

extracting, this model consists of many modules: 

a. Web Crawler: they have proposed an intelligent 

web crawler that can deep dive into the website 

and talk the navigation links form the static web 

pages as well as dynamic. 

b. Pretreatment of web resources: they have 

developed two procedures before processing the 

webpages the first is to normalize the html page 

and the other is to eliminate the noisy information. 

c. Locate and extract the entity data from Deep Web 

accurately: the concept of data extraction from 

unstructured data to structured done by DOM 

interface, then parsing the document using JTidy 

the web page is transformed to DOM tree to 

access each node of the webpage as an object. 

2.2.5. XQUERY Wrapper 

Researchers [18] have proposed a system to extract 

from websites, this approach was based on XQuery. 

Wikipedia Says : "XQuery (XML Query) is a query 

and functional programming language that queries and 

transforms collections of structured and unstructured 

data, usually in the form of XML, text and with 

vendor-specific extensions for other data formats 

(JSON, binary, etc.)" [15].  

They have proposed a schema model for modeling 

both web data and user requirement; therefore, they 

handle all type of data (single and complex data). 

Figure 2 show the structure of the data in a website that 

emphasizes the hierarchical nature of the data. 

 

 
Figure 2. Proposed schema model (Nie et al., 2011). 

This example of the proposed models previews the 

hierarchical data of the website and differentiate 

between the type of nodes we have (single and 

complex). 

The annotating of data semantics they map each 

data value to an attribute, and then they used an 

exclusive path to annotate the location of the node in 

DOM tree. The path will be XQuery expression which 

is based on XPath so it will be like the following 

formula  

P = /T1[p1]/ T2[p2]/....../ Tm[pm]/ 

3. Related Work 

Many efforts addressed to mitigate and stop the Web 

Scraping, these efforts have classified into the 

following categories Legal, Developers and research 

efforts: 

3.1. Legal Efforts  

Many legal efforts lead to introduce many laws such as 

(Mitchell, 2015) proposed Copyright Law which 

stands for “Copyright is a legal right created by the law 

of a country that grants the creator of original work 

exclusive rights for its use and distribution. This is 

usually   limited by time. The exclusive rights are not 

absolute but limited by limitations and exceptions to 

copyright law, including fair use“ (Mitchell, 2015), 

also The digital millennium copyright act (DMCA) 

was proposed by [1] it implements two 1996 treaties of 

the World Intellectual Property Organization (WIPO) 

and it criminalizes  all ways intended to circumvent 

measures that control access to copyrighted works 

[17]. After that, The  United States Law on The 

Restatement (Second) of Torts § 217 [6] defines the 

Trespass to chattels as"Intentionally dispossessing 

another of the chattel, or using or intermeddling with a 

chattel in the possession of another". 

Unfortunately, all these laws are not covered in all 

cases and will not force the scrapper to be down and it 

will be circumventing of the law due to the following 

reasons: 

A Statistics and facts: if you publish a fact on your 

website about something is copyrighted it will be 

much fine. 

B Information about copyrighted content posting 

frequency over the time is fine also. 

C If the creative content is shared in a verbatim may 

not be violating copyright law if the data is prices, 

names, company executives or some factual piece of 

information. 

D If you just want to store the materials into your 

offline database, you will be fine. 

E It is fine also if you analyze that database and 

publishing the statistics, authors data or even meta-

analysis data. 



Prevent XPath and CSS Based Scrapers by Using Markup Randomizer                                                                                      81 

 

F When   you select a few quotes or brief samples to 

your meta-analysis to make your point   you should 

examine that "fair use". 

G Lack of consent criteria of Trespass to chattels is not 

enough for scrappers because they treat the webpage 

the same as web browsers. 

H Actual harm criteria of Trespass to chattels also 

does not   apply   because   the scrappers are one 

hundred percent like the web browser so the actual 

damage of scraper visit is the same as browsers. 

3.1. Developer Efforts 

There are   few business solutions developed by large 

companies that partially closed the gap and proposed 

some business products such as the following:  

1. ShieldSquare is a software service that provides a 

Real-Time anti scraping service [8] that contains the 

following features : 

a. Actively detect/prevent website scraping & 

screen scraping. 

b. Prevent price scraping bots from competitors. 

c. Enhance your website’s user experience. 

d. Get complete visibility into bot traffic on your 

website. 

e. See comprehensive insights on BOT types and 

their sources 

2. ScrapeDefender is a tool to stop the web scrapers 

with main three functions Scan, Protect and Monitor 

detailed into the following points: 

a. Scan: ScrapeDefender routinely scans your site 

for web scraping vulnerabilities, alert you about 

what we find and recommend solutions. 

b. Secure: ScrapeDefender provides bullet-proof 

protection that stops web scrapers dead in their 

tracks. Your content is locked down and 

secured. 

c. Monitor: ScrapeDefender provides smart 

monitoring using intrusion detection techniques 

and alerts you about suspicious scraping activity 

when it occurs. 

3. ScrapeSentry first anti-scraping solution is 

developed to protect sites by blocking scrapers from 

violating intellectual property with the ability to 

distinguish the good and bad scrapers whether 

human or bot. ScrapeSentry is a software as a service 

(SaaS) anti scraping service 24/7 delivered from the 

Sentor Security Operations Centre (SOC). These 

Services include monitoring, analysis, investigation, 

blocking policy development, enforcement, and 

support. Recently Distil Network acquires 

ScrapeSentry on January 13, 2016 [3]. 

4. Distil Networks is the largest and modernist bot 

detection and mitigation for stopping all types of 

bots [4]. Network blocks every Open Web 

Application Security Project (OWASP) automated 

threats such as Web Scraping, Denial of Service or 

even Skewing by BOT defense product they own its 

very excellent product because it’s the first product 

that covers webpages, API and Mobile Apps which 

is distinct service. 

The proposed solutions are too good but the gap still 

exists and it has extra efforts to eliminate the scrappers 

totally and here is the following points for each 

proposed system: 

1. ShieldSquare is very attractive and intelligent. Due 

to the fast upgrade and update in the scrapers 

techniques this software will not survive all the time 

to detect the new patterns of the scrapers then the 

scrapers will eliminate the barriers and avoid the 

detection and catch techniques. Because of that, the 

proposed solution may mitigate the number of bots, 

but never helps the websites to be safe from the bots. 

On the other hand, this proposed solution requires 

each webpage or mobile app page to check if the 

visitor is real or bot, which means lack of 

performance. So we still need a paradigm to protect 

the whole website on the level of web server that 

never needs an interaction from the developers to be 

assured that each request will be handled without 

exceptions. 

2. ScrapeDefender is a   great solution, which will 

prevent all known scrapers by the firewall and make 

the content safe. But if we have a new era of web 

scrapers which means new attitude and patterns the 

firewall therefore will not prevent those scrapers. On 

the other hand, if the attackers exploit the DDOS and 

target the website then the firewall will stop then the 

website will be either stopped or the scrapers will 

continue work alone. As a result, the scrapers will 

access the gems and take the control over the 

website. 

3. ScrapeSentry is very intelligent and excellent, and 

has great reviews from its clients as they list on their 

website. Like other solutions, they filter the request 

and then take an action according to the analysis of 

the request, so we still have the same problem that if 

we have a new bot with new footprints the system 

will be blinded and never detects it, until the security 

officers fix it. Another weak point also like the other 

is that they add a new layer for the request life cycle, 

which will filter the request, let us say if we face a 

DDOS attack to let the layer down then the scraper 

will scrape everything until the layer returns back. 

Therefore, we still need any solution based on the 

markup itself, which will let the scraper stop without 

any affect to the performance. 

4. Distil Networks proposed a direct bot detection and 

mitigation process we find that they depend on how 

to prevent the bot to reach the web server as whole, 

but they never have   any plan for some cases, in 

case that bot successfully reached the page and stole 

the content so it still not sufficient and not 



82                                                                                        International Arab Journal of e-Technology, Vol. 5, No. 2, June 2018 

 

dependable so they add the term ‘Mitigation’ for 

their proposed technology. 

3.2. Researches Efforts 

There are relatively few works for addressing Web 

Scraping issue and here we are going to discuss some 

of the most related works to our work. 

Researchers [14] have presented an invention for 

preventing the scrapping of the information content of 

a database used for providing a website with data 

information. Their invention depends on using an anti-

scrapping filter or filtering means. The filter is used to 

perform some processing on the data requested by 

clients before being sent to them, in order to prevent 

scrapping. The method of preventing the information 

scrapping comprises of the following steps: 

1. Receiving the requested structured data record from 

the database. 

2. Splitting all the elements or the fields of the data 

into data containers, called cells, in a predetermined 

way. 

3. Giving each cell a unique sort-id, which is generated 

by a random number generator, and location 

information, which determine the location of the 

cell is inside the web page. 

4. The cells are sorted by the sort-id to establish a new 

unstructured data, to be sent to the requesting client. 

5. Each cell is encoded into a markup language, e.g. 

HTML. 

6. The resulting file is delivered to the requesting 

client. 

As a result of sorting the data containers into 

unstructured manner, a robot with scraping software 

would not be able to interpret the content, because it 

can   deal only with structured data. On the other hand, 

the unstructured placement of the data containers or 

cells would not cause any problem for the displaying 

of the file as a web page. The web browser will ignore 

the cells structural placement in the code, which is 

based upon the sort-id, and will visually sort the data 

according to the location information. Thus, the 

scraping robot will be prohibited to use a file that is 

generated by the proposed filter. 

This paper proposed a good solution because it 

solves a part of the problem this part is XPath based 

scrapers, but it is not efficient today because when we 

reorder the html tags within the pages the style of the 

page will corrupted as it randomly ordered. Another 

problem is HTML5/CSS3 based websites build in a 

way that cannot be reordered because the stylesheet is 

identical to the elements in html file. The proposed 

solution cannot deal with CSS based scrapers and the 

scraper will still function well because the class is not 

changed the change only in the order so the scraper 

will access the data in despite of the layout. Last 

weakness point is the paper never talks   about the 

performance issues and caching for the files, so the 

performance of the system will be very bad and will 

not help the website owners. 

Two researchers [5] have proposed a new model to 

mitigate the web scrapers based on historical analysis 

for the visits. They have created three lists for the 

visitor's IP address (Black-list, Gray-list, White-list) 

and deal with the visitor depending on his class. In the 

case of Black list, the model will block the visit and 

deny the session from initiation. 

In white list the session will be initiated successfully 

without any barriers then if the visit was classified as 

gray listed visit the model will treat with it in may 

suggested solutions as listed below: 

1. The model may display captcha before he views the 

content. 

2. The model may identify the scraper through browser 

information that is   usually   not sent to browser. 

3. The model may change the markup randomly to 

stop scraper from getting data using old CSS and 

XPath selectors. 

4. The model may change the information to an image 

so that the scraper will not reach any valuable text. 

5. The model may produce a frequency analysis to 

check if the visits number is normal or abnormal. 

6. The mode may produce an interval analysis to check 

that if the interval analysis is similar it may be   

classified as gray list and to be redirected to bot-

differentiating techniques like Captcha. Therefore, it 

may be   efficient if it is used in long-term strategy. 

7. The mode may produce a traffic analysis this is very 

necessary in these   days because the modern 

scrapers have many IP address by these techniques 

they can detect those scrapers. 

8. The mode may produce a URL Analysis for the 

visited pages to check if the ratio between data-rich 

pages and non-rich, so that they can identify the 

scrapers. 

9. The model may use Honeypots and Honeynets, 

which is very common in networking companies 

like Amazon and CloudFlare. 

The proposed solution is really very good as it provided 

a multi-tier defense, on the other hand it is not enough 

because the scraper may be developed and always 

treated as white listed so we need to focus more on the 

content itself. If we focus on the markup randomizer 

they proposed it could stop only the CSS based 

selectors, but if the scraper was used XPath it will not 

mitigated and the scraper will behave and function well. 

Another weakness point is not suggested idea provided 

to cache the generated randomized HTML markup, 

which means the model will generate a new 

randomized html file each time it accessed which will 

cause a harmful load on the server as well as if we have 

many sessions the server will get down. So the 

possibility of Distributed denial-of-service (DDoS) [9] 

will increase which is not acceptable in any way. 



Prevent XPath and CSS Based Scrapers by Using Markup Randomizer                                                                                      83 

 

4. Methodology 

We have proposed a model based on Markup 

Randomization to prevent the scrapers. The model is 

meant to change the markup in a way that the scraper 

will be prevented permanently. Next sections we will 

discuss the details. 

4.1. Markup Randomizer Model 

In this section, we are presenting the proposed model 

which illustrated at Figure 3. 

 

 
Figure 3: Deployment Model for the Markup Randomizer. 

Markup Randomization is a technique to protect 

from XPath, CSS based web scraper, and it is a very 

simple and efficient model. 

As we see in the model above we have the following: 

The Actor: the actor, which may be Client or 

browser or search engine or even scraper. 

 Web page: the requested web page. 

 Server Side: The web server itself and its role is to 

get the data from database then send it to anti 

scraper module. 

 Anti-Scraper: The module at web server before 

sending the response to client. Its main role is to 

prepare randomized version of the web page. 

Our markup randomizer designed to stop most of 

scrapers work because we will make a crucial change 

on the web page markup. To clear describing the 

changes let us spilt the scrapers to CSS based scrapers 

and XPath based scrapers. 

4.1.1. CSS-Based Scrapers 

This type of scrapers is designed to extract the data 

from a webpage using CSS selectors for example, we 

want to extract two elements values from a webpage 

and the original markup is: 
 

<div class="title">Data</div> 

<div class="news_details">Data</div> 
 

Therefore, the scraper should write the following code 

to extract those fields. 

 

$('.title') .text(); 

$('. news_details).text(); 
 

This code will return the value of the fields then to be 

stored in the database. The problem is the CSS class of 

each field is never changed Therefore the scraper will 

reach the data whenever tried to access the page. 

In our model the page markup as well as CSS will 

be changed automatically in a timely manner so, when 

the scraper setup the configuration to extract field by 

CSS classes he will figure out that scraper is stopped 

working and never returning data. Because of the 

automatic change and this is the expected result of our 

system to see the CSS code snippet before and after the 

change at figure 7 and 8. 

This change in CSS required a necessary change in 

HTML to fit with the new CSS Rules, so we have 

created a dictionary file that contains the mapping 

between the old rule name and the new rule name and 

store the file temporarily to the disk. An example of 

Randomize HTML file as well as the original are 

shown below at figures 9 and 10. 

4.1.2. XPath-Based Scrapers 

Another type of scrapers is designed to extract the data 

from a web page using XPath notation selectors for 

example, we want to extract elements values from a 

web page and the original markup is: 

  

<html> 

 <body> 

 <h1>Data</h1> 

  <table> 

   <tr><td>Data</td></tr> 

   

 <tr><td>Data</td></tr> 

  

 <tr><td>Data</td></tr> 

</table> 

  </body> 

 </html> 

Therefore, the scraper should write the 

following code to extract those fields 

 

$('/html/body/h1') .text(); 

$('/html/body/table/tr/td') .text(); 
 

This code will also return the value of the H1 element 

as well as each td element.  

To stop the scraper, we will add empty invisible 

tags that will be inserted into the randomized html file, 

because of the nature of XPath is to access any element 

in the document the XPath should be represented   the 

place of the element in hierarchical format. In our 

example H1 element is existed   on the body element 

so if we have wrap the H1 within DIV tag the old 

XPath will be meaningless and to be updated to be like 

this:  



84                                                                                        International Arab Journal of e-Technology, Vol. 5, No. 2, June 2018 

 

/html/body/div/h1. 
 

After we generated a randomized markup we save to 

the disk the following files: 

 Randomized CSS. 

 Randomized HTML. 

 Mapping File. 

This will enhance the performance for the model. Cron 

Jobs is the ideal solution to repeat the randomized   

process for each webpage on the web site to ensure that 

the markup is unique and refreshed all the time. The 

following steps are   executed by each run of the Cron 

Job. 

 Delete the old cached version of the Randomized 

CSS, HTML and Mapping File. 

 Generate the new Randomized files. 

5. Applying the Model 

 

Figure 4. methodology steps breakdown. 

5.1. Defining 

First step is to define our websites and building our 

dataset that we have talked about Experiments and 

Results section. 

We have created an offline version of each website 

contains all files we need like Html, CSS and 

JAVASCRIPT files. 

5.2. Scraping 

We have applied the scrapping for each website 

manually and defined the CSS-Rules for the scrapper 

and then ran the scraper to extract the data. We have 

successfully applied the scraper for each website with 

specific rules and get website data and stored it into a 

sheet shown in figure 6. 

5.3. Applying the Model 

We have applied our Markup randomizer for each 

website and created another offline version for the 

website that presents   the enhanced page and it should 

stop the scraper with that rules.  The following figures 7 

and 8 show the a CSS code snippet before and after 

applying our proposed model and figures 9 and 10 

show the HTML code snippet before and after applying 

our proposed model. 

 
 

 

 

 

 

 

 

Figure 5. Snippet from a scraped website. 

 

 

 

 



Prevent XPath and CSS Based Scrapers by Using Markup Randomizer                                                                                      85 

 

 
Figure 6. CSS code before applying the model. 

 

 
Figure 7. CSS code after applying the model.

 

 
Figure 8. HTML code snippet before applying our model. 



86                                                                                        International Arab Journal of e-Technology, Vol. 5, No. 2, June 2018 

 

 
Figure 9. HTML code snippet after applying our model. 

 

 

5.4. Evaluating 

To evaluate our model, we have to do the following 

steps: 

1. Re run the scrapper to check if the scrapper is   still 

alive or stopped totally. 

2. Test the Markup by using third party to check if   it 

is really changed and how much the percentage of 

the changed lines. 

3. Test the file size to see if there is a change on file 

size per website and to detect the overall change 

ratio. 

6. Experements and Results 

To test our approach, we have experimented with our 

dataset which contains multiple categories and many 

websites. 

We have built our dataset consists of websites from 

multiple categories as below: 

1. News websites. 

2. Weather forecasting websites. 

3. Stock markets and currency websites. 

We have chosen 30 websites randomly distributed   10 

websites for each category and we intentionally 

checked   that each website is   different from the   

other. 

A. Markup Similarity 

We figure out the similarity between the page’s 

markup for each website before  applying 

randomizer and after applying randomizer as Table 1 
 

Table 1. Markup similarity per each category. 

Category Similarity  

News 37.75% 

Currency 50.7% 

Weather 34.85% 

Overall 41.1% 

 

As shown in table 1 we knew that we are changing 

only the CSS attribute for each page body’s elements 

therefore the similarity then we will see there are 

Inverse Relationships between the page markup 

length and the similarity. 

B. File Size 

File size measurement means how much the 

generated files weight such as CSS and HTML. 

Measuring the file size is important because we will 

add new files to be stored on the server cache 

directory so it should be accepted, because it is a 

resource and each resource is limited on the world.  

File size is changed after applying it because of   

length of the Randomized CSS Rule is 13 character 

per rule so this will reflect to the file size. 

We figure that, file size is enhanced by our approach 

because of CSS and HTML optimization done 

during applying our model. The optimization done 

by removing unnecessary lines and comments as 

well as white-spaces. 

C. Time 

Time is the most important factor which led the 

performance and the model reliability and because 

the model is applied on timely-manner we have to be 

sure that it should be fast enough. 

During the experiments, we see the time to apply the 

model on a specific page is good and it ranged from 

(1 second - to 2 minutes) which is efficient to stop 

the scraper because he needs a lot of time to setup 

the scrapper rules before starting scraping a targeted 

website. 

Depending on the html markup length which is 

usually less than 5000. Figure 11 demonstrates the 

results for the experiments X-axis holds the total 

lines (CSS lines and HTML lines) and Y-axis holds 

the total seconds for applying the model. 

Finally, we have got sure that system is running 

perfectly without any problems. 



Prevent XPath and CSS Based Scrapers by Using Markup Randomizer                                                                                      87 

 

 

Figure 10. Experiments time. 

7. Conclusion 

Markup Randomizer Model stops the scrappers in the 

meantime by changing the CSS and HTML markups 

periodically which will efficiently stop the scrapers 

forever. Therefore, the model is tested on our dataset 

which was collected randomly from different 

categories. The test   was done in three stages scrape, 

randomize, re-scrape and the results were   very good. 

Finally, we got that our model is completely stopping 

the CSS-based scrappers and experiments show   that 

the required time is very good for that bunch of results 

and it’s accepted at all. 

References 

[1] Band J., "The digital millennium copyright act" , 

Available at: 

https://www.arl.org/storage/documents/publicatio

ns/band-dmca-memo-16aug01.pdf, (accessed: 28 

October, 1998), 1998. 

[2] Bonifacio C., Barchyn T., Hugenholtz C., 

Kienzle S., "CCDST: A free Canadian climate 

data scraping tool", Computers & Geosciences, 

vol. 75, pp. 13-16, 2015. 

[3] Distil Networks, Distil Networks Acquires Sentor 

ScrapeSentry to Add 24/7 Security Operations 

Center and Expert Team of Analysts. Available 

at: https://resources.distilnetworks.com/press-

releases/distil-networks-acquires-sentor-

scrapesentry-to-add-24-7-security-operations-

center-and-expert-team-of-analysts, 2016. 

[4] Distil Networks, Distil Networks. Available at: 

https://www.crunchbase.com/organization/distil, 

2018. 

[5] Haque A., Singh S., "Anti-scraping application 

development", in  2015 International Conference 

on Advances in Computing, Communications and 

Informatics (ICACCI), pp. 869-874, 2015. 

[6] Henderson J., Twerski A., "Proposed Revision of 

Section 402A of the Restatement (Second) of 

Torts", Cornell Law. Review, vol. 77, no.6, p. 

1512-1557, 1992. 

[7] Mahto D., Singh L., "A dive into Web Scraper 

world", 2016 3rd International Conference on 

Computing for Sustainable Global Development 

(INDIACom),  pp. 689-693, 2016. 

[8] Mathew A., Balakrishnan H., Palani S., 

"Scrapple: a Flexible Framework to Develop 

Semi-Automatic Web Scrapers", International 

Review on Computers and Software (IRECOS), 

vol. 10, no. 5, pp. 475-480, 2015. 

[9] Mirkovic J., Reiher P., "A taxonomy of DDoS 

attack and DDoS defense mechanisms" , ACM 

SIGCOMM Computer Communication Review, 

vol. 34, no. 2, pp. 39-53, 2004. 

[10] ScrapeDefender,  ScrapeDefender. Available at: 

http://scrapedefender.com 

[11] ScrapeSentry, ScrapeSentry. 

[12] ShieldSquare, ShieldSquare Bot Mitigation and 

Bot Management solution, Available at: 

https://www.shieldsquare.com. 

[13] Thelwall M., "A web crawler design for data 

mining", Journal of Information Science, vol. 27, 

no. 5, pp. 319-325, 2001. 

[14] Wetterström R.,Andersson S., "Web information 

scraping protection", ed: Google Patents, 2009. 

[15] Wikipedia , XQuery. Available at: 

https://en.wikipedia.org/wiki/XQuery 

[16] Wikipedia. Web scraping. Available at: 

https://en.wikipedia.org/wiki/Web_scraping 

[17] Wilbur M., “The Digital Millennium Copyright 

Act”,. iUniverse, 2000. 

[18] Yu H.T., Guo J.Y., Yu Z.T., Xian Y.T., Yan X., 

"A novel method for extracting entity data from 

Deep Web precisely", in The 26th Chinese 

Control and Decision Conference (2014 CCDC), 

pp. 5049-5053, 2014. 

 
 

Ahmed Diab. Masters 

Researchers. He got B.Sc. 

Information Technology from 

Islamic University of Gaza - 

Palestine, (2007-2011), Master 

degree from Islamic University of 

Gaza (20013- 2018). 

 

Tawfiq Barhoom. Associated Prof. 

at Computer Science Department, 

Faculty of IT, Islamic University-

Gaza. He got B.Sc. Computer 

Science from Omdurman Ahlia 

University Sudan, (1991-1995), 

Master degree from Department of 

Computer Science and Engineering, 

Shang Hai Jiao Tong University (SJTU)– Shang Hai – 

China, (1996- 1999) and PhD in Applied computer 

Technologies, Department of computer science and 

Engineering, Shang Hai Jiao (2004). 

 
 

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7259950
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7259950
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7259950
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7589474
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7589474
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7589474

